【題目】半期考試后,班長小王統(tǒng)計了50名同學的數(shù)學成績,繪制頻率分布直方圖如圖所示.
根據(jù)頻率分布直方圖,估計這50名同學的數(shù)學平均成績;
用分層抽樣的方法從成績低于115的同學中抽取6名,再在抽取的這6名同學中任選2名,求這兩名同學數(shù)學成績均在中的概率.
【答案】(1)(2)
【解析】
⑴用頻率分布直方圖中的每一組數(shù)據(jù)的平均數(shù)乘以對應的概率并求和即可得出結(jié)果;
⑵首先可通過分層抽樣確定6人中在分數(shù)段以及分數(shù)段中的人數(shù),然后分別寫出所有的基本事件以及滿足題意中“兩名同學數(shù)學成績均在中”的基本事件,最后兩者相除,即可得出結(jié)果。
⑴由頻率分布表,估計這50名同學的數(shù)學平均成績?yōu)椋?/span>
;
⑵由頻率分布直方圖可知分數(shù)低于115分的同學有人,
則用分層抽樣抽取6人中,分數(shù)在有1人,用a表示,
分數(shù)在中的有5人,用、、、、表示,
則基本事件有、、、、、、、、
、、、、、、,共15個,
滿足條件的基本事件為、、、、、、、、、,共10個,
所以這兩名同學分數(shù)均在中的概率為。
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,記為與原點距離等于的全體直線所成的集合.問:是否存在常數(shù),使得對任意的直線,均存在、,、分別過 與橢圓的交點、,且有?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)當時,求函數(shù)的最大值;
(2)令其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;
(3)當,,方程有唯一實數(shù)解,求正數(shù)的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為中心,以坐標軸為對稱軸的橢圓C經(jīng)過點M(2,1),N(,-).
(1)求橢圓C的標準方程;
(2)經(jīng)過點M作傾斜角互補的兩條直線,分別與橢圓C相交于異于M點的A,B兩點,求直線AB的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線:,過拋物線焦點且與軸垂直的直線與拋物線相交于、兩點,且的周長為.
(1)求拋物線的方程;
(2)若直線過焦點且與拋物線相交于、兩點,過點、分別作拋物線的切線、,切線與相交于點,求:的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某電子科技公司由于產(chǎn)品采用最新技術(shù),銷售額不斷增長,最近個季度的銷售額數(shù)據(jù)統(tǒng)計如下表(其中表示年第一季度,以此類推):
季度 | |||||
季度編號x | |||||
銷售額y(百萬元) |
(1)公司市場部從中任選個季度的數(shù)據(jù)進行對比分析,求這個季度的銷售額都超過千萬元的概率;
(2)求關(guān)于的線性回歸方程,并預測該公司的銷售額.
附:線性回歸方程:其中,
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本x(單位:萬元)與產(chǎn)品銷售收入y(單位:萬元)存在較好的線性關(guān)系,下表記錄了最近5次該產(chǎn)品的相關(guān)數(shù)據(jù).
x(萬元) | 3 | 5 | 7 | 9 | 11 |
y(萬元) | 8 | 10 | 13 | 17 | 22 |
(1)求y關(guān)于x的線性回歸方程;
(2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本12萬元的毛利率更大還是投入成本15萬元的毛利率更大(毛利率)?
相關(guān)公式:,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com