16.下列說法正確的是( 。
A.“若$x=\frac{π}{3}$,則$sinx=\frac{{\sqrt{3}}}{2}$”的逆命題為真
B.a,b,c為實數(shù),若a>b,則ac2>bc2
C.命題p:?x∈R,使得x2+x-1<0,則?p:?x∈R,使得x2+x-1>0
D.若命題?p∧q為真,則p假q真

分析 寫出原命題的逆命題,可判斷A;令c=0,可判斷B;寫出原命題的否定形式,可判斷C;根據(jù)復(fù)合命題真假判斷的真值表,可判斷D.

解答 解:“若$x=\frac{π}{3}$,則$sinx=\frac{{\sqrt{3}}}{2}$”的逆命題為“若$sinx=\frac{{\sqrt{3}}}{2}$,則$x=\frac{π}{3}$”為假命題;
當(dāng)c=0時,若a>b,則ac2>bc2不成立,故錯誤;
命題p:?x∈R,使得x2+x-1<0,則?p:?x∈R,使得x2+x-1≤0,故錯誤;
若命題?p∧q為真,則p假q真,故正確;
故選:D.

點評 本題考查的知識點是四種命題,不等式的基本性質(zhì),全稱(特稱)命題的否定,復(fù)合命題真假判斷的真值表,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)=cos(ωx+$\frac{π}{6}$)(ω>0)的圖象與直線y=1的兩個交點的最短距離是π,要得到y(tǒng)=f(x)的圖象,只需要把y=sinωx的圖象( 。
A.向左平移$\frac{π}{3}$個單位B.向右平移$\frac{π}{3}$個單位
C.向左平移$\frac{π}{6}$個單位D.向右平移$\frac{π}{6}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知⊙C過點P(1,1),且與⊙M:(x+2)2+(y+2)2=r2(r>0)關(guān)于直線x+y+2=0對稱.
(Ⅰ)求⊙C的方程;
(Ⅱ)過點P作兩條相異直線分別與⊙C相交于A,B,且直線PA和直線PB的傾斜角互補,O為坐標(biāo)原點,試判斷直線OP和AB是否平行?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)=sin(2x+$\frac{π}{6}$)+sin2x-$\frac{1}{2}$.
(Ⅰ)求函數(shù)f(x)的對稱中心;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,若a=2$\sqrt{3}$,f($\frac{A}{2}$)=$\frac{1}{2}$,cos(π-C)=-$\frac{\sqrt{6}}{3}$,求b的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=2sinx(sinx+cosx),x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)增區(qū)間;
(Ⅱ)在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足f($\frac{A}{2}$+$\frac{3}{8}$π)=$\frac{2+\sqrt{2}}{2}$,cosC+(cosA-$\sqrt{3}$sinA)cosB=0,a=2$\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.
已知某幾何體的三視圖如圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.則該幾何體的表面積是$64+32\sqrt{2}$;體積是$\frac{160}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一位母親在孩子的成長檔案中記錄了年齡和身高間的數(shù)據(jù)(截取其中部分):
年齡(周歲)3456789
身高94.8104.2108.7117.8124.3130.8139.1
根據(jù)以上樣本數(shù)據(jù),建立了身高y(cm)與年齡x(周歲)的線性回歸方程為$\widehat{y}$=7.19x+a,可預(yù)測該孩子10周歲時的身高為(  )
A.142.8cmB.145.9cmC.149.8cmD.151.7cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)全集U={x∈R|x≥0},函數(shù)f(x)=$\sqrt{1-lgx}$的定義域為M,則∁UM為( 。
A.(10,+∞)∪{0}B.(10,+∞)C.(0,10)D.(0,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.三棱錐P-ABC中,△ABC為等邊三角形,PA=PB=PC=2,PA⊥PB,三棱錐P-ABC的外接球的表面積為(  )
A.48πB.12πC.4$\sqrt{3}$πD.32$\sqrt{3}$π

查看答案和解析>>

同步練習(xí)冊答案