【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識(shí)競賽為主的《中國詩詞大會(huì)》火爆熒屏.將中學(xué)組和大學(xué)組的參賽選手按成績分為優(yōu)秀、良好、一般三個(gè)等級(jí),隨機(jī)從中抽取了100名選手進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級(jí)人數(shù)的條形圖.

(1)若將一般等級(jí)和良好等級(jí)合稱為合格等級(jí),根據(jù)已知條件完成下面的列聯(lián)表,據(jù)此資料你是否有95%的把握認(rèn)為選手成績“優(yōu)秀”與文化程度有關(guān)?

優(yōu)秀

合格

合計(jì)

大學(xué)組

中學(xué)組

合計(jì)

注:,其中.

0.10

0.05

0.005

2.706

3.841

7.879

(2)若參賽選手共6萬人,用頻率估計(jì)概率,試估計(jì)其中優(yōu)秀等級(jí)的選手人數(shù).

(3)在優(yōu)秀等級(jí)的選手中取6名,依次編號(hào)為1,2,3,4,5,6.在良好等級(jí)的選手中取6名,依次編號(hào)為1,2,3,4,5,6,在選出的6名優(yōu)秀等級(jí)的選手中任取一名,記其編號(hào)為,在選出的6名良好等級(jí)的選手中任取一名,記其編號(hào)為,求使得方程組有唯一一組實(shí)數(shù)解的概率.

【答案】(1)見解析;(2)4.5;(3)

【解析】試題分析:(1)由條形圖可知列聯(lián)表,利用公式求得的觀測(cè)值,即可作出預(yù)測(cè)結(jié)果;

(2)由條形圖知,所抽取的人中優(yōu)秀等級(jí)有人,得到優(yōu)秀率,用頻率估計(jì)概率,得參賽選手中優(yōu)秀等級(jí)的概率,即可求解所有參賽選手中優(yōu)秀等級(jí)的選手人數(shù);

(3)利用古典概型及其概率的計(jì)算公式,即可求解相應(yīng)的概率.

試題解析:

(1)由條形圖可知列聯(lián)表如下:

優(yōu)秀

合格

合計(jì)

大學(xué)組

45

10

55

中學(xué)組

30

15

45

合計(jì)

75

25

100

的觀測(cè)值,

∴沒有95%的把握認(rèn)為選物成績“優(yōu)秀”與文化程度有關(guān).

(2)由條形圖知,所抽取的100人中優(yōu)秀等級(jí)有75人,故優(yōu)秀率為,用頻率估計(jì)概率,則參賽選手中優(yōu)秀等級(jí)的概率是,∴所有參賽選手中優(yōu)秀等級(jí)的選手人數(shù)約為(萬).

(3)從1,2,3,4,5,6中取,從1,2,3,4,5,6中取,共有36種組合,要使方程組有唯一一組實(shí)數(shù)解,則,共33種組合,故所求概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn , 公比q>0,S2=2a2﹣2,S3=a4﹣2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn= ,Tn為{bn}的前n項(xiàng)和,求T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是首項(xiàng)為2,公比為的等比數(shù)列,且前項(xiàng)和為.

(1)用表示;

(2)是否存在自然數(shù),使得成立?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的內(nèi)角AB,C的對(duì)邊分別為a,b,c,2acosC=bcosC+ccosB

(1)求角C的大小;

(2)若c=a2+b2=10,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,過的直線交于兩點(diǎn),點(diǎn)的坐標(biāo)為.

(1)當(dāng)軸垂直時(shí),求直線的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),直線交橢圓E于A,B兩點(diǎn),△ABF1的周長為16,△AF1F2的周長為12.

(1)求橢圓E的標(biāo)準(zhǔn)方程與離心率;

(2)若直線l與橢圓E交于C,D兩點(diǎn),且P(2,2)是線段CD的中點(diǎn),求直線l的一般方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 (a>b>0)過點(diǎn)P(2,1),且離心率為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),在橢圓短軸上有兩點(diǎn)M,N滿足 ,直線PM、PN分別交橢圓于A,B.
(i)求證:直線AB過定點(diǎn),并求出定點(diǎn)的坐標(biāo);
(ii)求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的方程為,圓與直線相交于兩點(diǎn),且為坐標(biāo)原點(diǎn)),則實(shí)數(shù)的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某項(xiàng)科研活動(dòng)共進(jìn)行了5次試驗(yàn),其數(shù)據(jù)如表所示:

特征量

第1次

第2次

第3次

第4次

第5次

x

555

559

551

563

552

y

601

605

597

599

598

(Ⅰ)從5次特征量y的試驗(yàn)數(shù)據(jù)中隨機(jī)地抽取兩個(gè)數(shù)據(jù),求至少有一個(gè)大于600的概率;
(Ⅱ)求特征量y關(guān)于x的線性回歸方程 ;并預(yù)測(cè)當(dāng)特征量x為570時(shí)特征量y的值.
(附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為 = ,

查看答案和解析>>

同步練習(xí)冊(cè)答案