5.函數(shù)y=sinx+ex的圖象上一點(diǎn)(0,1)處的切線方程為( 。
A.2x-y+1=0B.x-2y+1=0C.2x-y-1=0D.x-2y-1=0

分析 求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,由斜截式方程,即可得到所求切線的方程.

解答 解:函數(shù)y=sinx+ex的導(dǎo)數(shù)為y′=cosx+ex,
在一點(diǎn)(0,1)處的切線斜率為cos0+1=2,
即有在一點(diǎn)(0,1)處的切線方程為y=2x+1,
即為2x-y+1=0.
故選A.

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,考查直線方程的求法,正確求導(dǎo)是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若集合M={x|y=$\sqrt{25-{x}^{2}}$},集合N={x|cosx≤$\frac{1}{2}$},則M∩N=[-5,-$\frac{π}{3}$]∪[$\frac{π}{3}$,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{{2}^{x}-a}{{2}^{x}+1}$是奇函數(shù).
(Ⅰ)求a的值;
(Ⅱ)判斷f(x)在(-∞,+∞)上的單調(diào)性,并加以證明;
(Ⅲ)對于任意不小于3的自然數(shù)n,都有f(f(n))>f($\frac{n}{n+1}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=\left\{\begin{array}{l}-x,-1≤x<0\\{x^2},0≤x<1\\ x,\;1≤x≤2.\end{array}\right.$.
(1)求f(-$\frac{2}{3}$),f($\frac{1}{2}$),f($\frac{3}{2}$)的值;
(2)作出函數(shù)f(x)的簡圖;
(3)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.將f(x)=2sinx的圖象向右平移φ(0<φ<π)個單位所得圖象對應(yīng)的函數(shù)是偶函數(shù),則φ的值為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=|x+2|+|x|
(1)解不等式f(x)≤4;
(2)若對?x∈R,恒有f(x)>|3a-1|成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列函數(shù)中,對于任意x∈R,同時滿足條件f(x)=f(-x)和f(x-π)=f(x)的函數(shù)是( 。
A.f(x)=sinxB.f(x)=sinx•cosxC.f(x)=cosxD.f(x)=cos2x-sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知向量$\overrightarrow{a}$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{OA}$=$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{OB}$=$\overrightarrow{a}$+$\overrightarrow$,若△OAB是等邊三角形,則△OAB的面積為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若|x+1|+|x-3|≥a+$\frac{3}{a}$對一切實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案