8.已知函數(shù)f(x)=4x2-mx+1在(-∞,-2]上遞減,在[-2,+∞)上遞增,則f(1)=(  )
A.19B.20C.21D.22

分析 根據(jù)已知可得函數(shù)的對稱軸x=$\frac{m}{8}$=-2,求出m值后,可得函數(shù)的解析式,將x=1代入可得答案.

解答 解:∵函數(shù)f(x)=4x2-mx+1在(-∞,-2]上遞減,在[-2,+∞)上遞增,
∴$\frac{m}{8}$=-2,
解得:m=-16,
∴f(x)=4x2+16x+1,
∴f(1)=21,
故選:C.

點(diǎn)評 本題考查的知識點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)$f(x)={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{2014}}{x^{2014}}(x∈R)$是奇函數(shù),則a0+a2+a4+…+a2014=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知一個圓C經(jīng)過兩個點(diǎn)A(6,-2),B(-1,5),且圓心在直線l:x-2y+1=0上,求此圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合$A=\left\{{x{{\left|{({\frac{1}{2}})}\right.}^x}>1}\right\}$,集合B={x|lgx<0}則A∩B(  )
A.{x|x<0}B.{x|0<x<1}C.{x|x>1}D.φ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xoy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,右焦點(diǎn)F(1,0),點(diǎn)P在橢圓C上,且在第一象限內(nèi),直線PQ與圓O:x2+y2=b2相切于點(diǎn)M.
(1)求橢圓C的方程;
(2)若|PM|×|PF|=$\frac{3}{4}$,求點(diǎn)P的橫坐標(biāo)的值;
(3)若OP⊥OQ,求點(diǎn)Q的縱坐標(biāo)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.拋物線C:y2=2x的準(zhǔn)線方程是x=-$\frac{1}{2}$,經(jīng)過點(diǎn)P(4,1)的直線l與拋物線C相交于A,B兩點(diǎn),且點(diǎn)P恰為AB的中點(diǎn),F(xiàn)為拋物線的焦點(diǎn),則$|{\overrightarrow{AF}}|+|{\overrightarrow{BF}}|$=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知-1<a<b<2,則2a-b的范圍是(-4,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知A={x|a<x<3+a},B={x|x≤-1或x≥1};
(1)若A∪B=R,求實數(shù)a的取值范圍;
(2)若A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若a<b<0,則( 。
A.a2<ab<b2B.ac<bcC.$\frac{1}{a}>\frac{1}$D.$\frac{a}{c^2}>\frac{c^2}$

查看答案和解析>>

同步練習(xí)冊答案