若點(diǎn)M到兩定點(diǎn)F1(0,-1),F2(0,1)的距離之和為2,則點(diǎn)M的軌跡是 (   )
.橢圓       .直線      .線段     .線段的中垂線.
注意到故點(diǎn)M只能在線段上運(yùn)動(dòng),即點(diǎn)M的軌跡就是線段,選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,右準(zhǔn)線的方程為,傾斜角為的直線交橢圓兩點(diǎn),且的中點(diǎn)坐標(biāo)為,求橢圓的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線的焦點(diǎn)為,以為圓心,長(zhǎng)為半徑,在軸上方的半圓交拋物線于不同的兩點(diǎn),,的中點(diǎn).
⑴求的值;
⑵是否存在這樣的值,使,,成等差數(shù)列?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分) 設(shè)不等式組表示的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823124132644200.gif" style="vertical-align:middle;" />,區(qū)域內(nèi)的動(dòng)點(diǎn)到直線和直線的距離之積為2, 記點(diǎn)的軌跡為曲線. 是否存在過(guò)點(diǎn)的直線l, 使之與曲線交于相異兩點(diǎn)、,且以線段為直徑的圓與y軸相切?若存在,求出直線l的斜率;若不存在, 說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分15分)如圖△ABC為直角三角形,點(diǎn)M在y軸上,且,點(diǎn)C在x軸上移動(dòng),(I)求點(diǎn)B的軌跡E的方程;(II)過(guò)點(diǎn)的直線l與曲線E交于P、Q兩點(diǎn),
設(shè)的夾角為
的取值范圍;  (III)設(shè)以點(diǎn)N(0,m)為圓心,以
半徑的圓與曲線E在第一象限的交點(diǎn)H,若圓在點(diǎn)H處的
切線與曲線E在點(diǎn)H處的切線互相垂直,求實(shí)數(shù)m的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)中心在原點(diǎn)的橢圓與拋物線有一個(gè)公共焦點(diǎn),且其離心率是雙曲線的離心率的倒數(shù),
(1)求橢圓方程。(2)若(1,)是直線被橢圓截得的線段的中點(diǎn),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)P滿足:,且. (I)求動(dòng)點(diǎn)P的軌跡G的方程;(II)過(guò)點(diǎn)B的直線與軌跡G交于兩點(diǎn)M,N.試問在x軸上是否存在定點(diǎn)C ,使得 為常數(shù).若存在,求出點(diǎn)C的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題



查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知橢圓的左、右焦點(diǎn)分別為,離心率,右準(zhǔn)線方程. (1)求橢圓的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)的直線與該橢圓相交于M、N兩點(diǎn),且求直線的方程式.

查看答案和解析>>

同步練習(xí)冊(cè)答案