【題目】節(jié)日前夕,小李在家門前的樹(shù)上掛了兩串彩燈,這兩串彩燈的第一次閃亮相互獨(dú)立,且都在通電后的4秒內(nèi)任一時(shí)刻等可能發(fā)生,然后每串彩燈以4秒為間隔閃亮,那么這兩串彩燈同時(shí)通電后,它們第一次閃亮的時(shí)候相差不超過(guò)2秒的概率是( )
A.
B.
C.
D.

【答案】C
【解析】解:設(shè)兩串彩燈第一次閃亮的時(shí)刻分別為x,y,
由題意可得0≤x≤4,0≤y≤4,
它們第一次閃亮的時(shí)候相差不超過(guò)2秒,則|x﹣y|≤2,
由幾何概型可得所求概率為上述兩平面區(qū)域的面積之比,

由圖可知所求的概率為: =
故選C
設(shè)兩串彩燈第一次閃亮的時(shí)刻分別為x,y,由題意可得0≤x≤4,0≤y≤4,要滿足條件須|x﹣y|≤2,作出其對(duì)應(yīng)的平面區(qū)域,由幾何概型可得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績(jī)與物理成績(jī)之間的關(guān)系,隨機(jī)抽取高二年級(jí)名學(xué)生某次考試成績(jī)(百分制)如下表所示:

序號(hào)

1

2

3

4

5

6

7

8

9

10

數(shù)學(xué)成績(jī)

95

75

80

94

92

65

67

84

98

71

物理成績(jī)

90

63

72

87

91

71

58

82

93

81

序號(hào)

11

12

13

14

15

16

17

18

19

20

數(shù)學(xué)成績(jī)

67

93

64

78

77

90

57

83

72

83

物理成績(jī)

77

82

48

85

69

91

61

84

78

86

若數(shù)學(xué)成績(jī)分以上為優(yōu)秀,物理成績(jī)分(含分)以上為優(yōu)秀.

(Ⅰ)根據(jù)上表完成下面的列聯(lián)表

數(shù)學(xué)成績(jī)優(yōu)秀

數(shù)學(xué)成績(jī)不優(yōu)秀

合計(jì)

物理成績(jī)優(yōu)秀

物理成績(jī)不優(yōu)秀

12

合計(jì)

20

(Ⅱ)根據(jù)題(Ⅰ)中表格的數(shù)據(jù)計(jì)算,有多少的把握認(rèn)為學(xué)生的數(shù)學(xué)成績(jī)與物理成績(jī)之間有關(guān)系?

(Ⅲ)若按下面的方法從這人中抽取人來(lái)了解有關(guān)情況將一個(gè)標(biāo)有數(shù)字,,,的正六面體骰子連續(xù)投擲兩次,記朝上的兩個(gè)數(shù)字的乘積為被抽取人的序號(hào),試求抽到號(hào)的概率.

參考數(shù)據(jù)公式:①獨(dú)立性檢驗(yàn)臨界值表

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

②獨(dú)立性檢驗(yàn)隨機(jī)變量值的計(jì)算公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),圓:,過(guò)點(diǎn)的動(dòng)直線與圓交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).

M的軌跡方程;

當(dāng)|OP|=|OM|時(shí),求的方程及的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司制定了一個(gè)激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案:當(dāng)銷售利潤(rùn)不超過(guò)10萬(wàn)元時(shí),按銷售利潤(rùn)的16%進(jìn)行獎(jiǎng)勵(lì);當(dāng)銷售利潤(rùn)超過(guò)10萬(wàn)元時(shí),若超出A萬(wàn)元,則超出部分按2log5A+1)進(jìn)行獎(jiǎng)勵(lì).記獎(jiǎng)金y(單位:萬(wàn)元),銷售利潤(rùn)x(單位:萬(wàn)元)

1)寫出該公司激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案的函數(shù)模型;

2)如果業(yè)務(wù)員老張獲得5.6萬(wàn)元的獎(jiǎng)金,那么他的銷售利潤(rùn)是多少萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)對(duì)任意實(shí)數(shù)xy恒有fx+y)=fx)+fy)且當(dāng)x>0,fx)<0.

給出下列四個(gè)結(jié)論:

f(0)=0;fx)為偶函數(shù);

fx)為R上減函數(shù);fx)為R上增函數(shù).

其中正確的結(jié)論是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推行新課堂教學(xué)法, 某化學(xué)老師分別用傳統(tǒng)教學(xué)和新課堂兩種不同的教學(xué)方式, 在甲、乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn), 為了解教學(xué)效果, 期中考試后, 分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì), 作出的莖葉圖如下圖, 記成績(jī)不低于70分者為成績(jī)優(yōu)良.

(1) 分別計(jì)算甲、乙兩班20個(gè)樣本中, 化學(xué)成績(jī)前十的平均分, 并據(jù)此判斷哪種教學(xué)方式的教學(xué)效果更佳;

甲班

乙班

總計(jì)

成績(jī)優(yōu)良

成績(jī)不優(yōu)良

 計(jì)

(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,是否有95%的把握認(rèn)為成績(jī)優(yōu)良與教學(xué)方式關(guān)”?

0.05

0.010

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),它的離心率是雙曲線的離心率的倒數(shù).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過(guò)橢圓的右焦點(diǎn)作直線交橢圓兩點(diǎn),交軸于點(diǎn),若,,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分15分)已知數(shù)列{an}的前n項(xiàng)和為Sn,且anSn2的等差中項(xiàng),數(shù)列{bn}中,b1=1,點(diǎn)Pbn,bn+1)在直線x-y+2=0上。

1)求a1a2的值;

2)求數(shù)列{an},{bn}的通項(xiàng)anbn

3)設(shè)cn=an·bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知真命題:“函數(shù)y=f(x)的圖象關(guān)于點(diǎn)P(a,b)成中心對(duì)稱圖形”的充要條件為“函數(shù)y=f(x+a)﹣b 是奇函數(shù)”.
(1)將函數(shù)g(x)=x3﹣3x2的圖象向左平移1個(gè)單位,再向上平移2個(gè)單位,求此時(shí)圖象對(duì)應(yīng)的函數(shù)解析式,并利用題設(shè)中的真命題求函數(shù)g(x)圖象對(duì)稱中心的坐標(biāo);
(2)求函數(shù)h(x)= 圖象對(duì)稱中心的坐標(biāo);
(3)已知命題:“函數(shù) y=f(x)的圖象關(guān)于某直線成軸對(duì)稱圖象”的充要條件為“存在實(shí)數(shù)a和b,使得函數(shù)y=f(x+a)﹣b 是偶函數(shù)”.判斷該命題的真假.如果是真命題,請(qǐng)給予證明;如果是假命題,請(qǐng)說(shuō)明理由,并類比題設(shè)的真命題對(duì)它進(jìn)行修改,使之成為真命題(不必證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案