【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與物理成績之間的關(guān)系,隨機抽取高二年級名學(xué)生某次考試成績(百分制)如下表所示:
序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
數(shù)學(xué)成績 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 |
物理成績 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 |
序號 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
數(shù)學(xué)成績 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
物理成績 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
若數(shù)學(xué)成績分以上為優(yōu)秀,物理成績分(含分)以上為優(yōu)秀.
(Ⅰ)根據(jù)上表完成下面的列聯(lián)表:
數(shù)學(xué)成績優(yōu)秀 | 數(shù)學(xué)成績不優(yōu)秀 | 合計 | |
物理成績優(yōu)秀 | |||
物理成績不優(yōu)秀 | 12 | ||
合計 | 20 |
(Ⅱ)根據(jù)題(Ⅰ)中表格的數(shù)據(jù)計算,有多少的把握認為學(xué)生的數(shù)學(xué)成績與物理成績之間有關(guān)系?
(Ⅲ)若按下面的方法從這人中抽取人來了解有關(guān)情況:將一個標(biāo)有數(shù)字,,,,,的正六面體骰子連續(xù)投擲兩次,記朝上的兩個數(shù)字的乘積為被抽取人的序號,試求:抽到號的概率.
參考數(shù)據(jù)公式:①獨立性檢驗臨界值表
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
②獨立性檢驗隨機變量值的計算公式:.
【答案】(1)列聯(lián)表見解析.
(2)我們有的把握認為:學(xué)生的數(shù)學(xué)成績與物理成績之間有關(guān)系.
(3).
【解析】分析:(Ⅰ)從高二年級名學(xué)生某次考試成績表,可數(shù)出數(shù)學(xué)、物理成績優(yōu)秀人數(shù),可完成列聯(lián)表。(Ⅱ)根據(jù)列聯(lián)表中的數(shù)據(jù)和公式:,可求得,因為。因為的概率約為,所以我們有的把握認為:學(xué)生的數(shù)學(xué)成績與物理成績之間有關(guān)系. (Ⅲ)因為正六面體骰子標(biāo)的數(shù)有,,,,,。積為12有以下情況:。所以抽到號有種,,,?偟幕臼录36種。進而可得抽到號的概率.
詳解:(Ⅰ)表格為
數(shù)學(xué)成績優(yōu)秀 | 數(shù)學(xué)成績不優(yōu)秀 | 合計 | |
物理成績優(yōu)秀 | 5 | 2 | 7 |
物理成績不優(yōu)秀 | 1 | 12 | 13 |
合計 | 6 | 14 | 20 |
(Ⅱ)提出假設(shè):學(xué)生的數(shù)學(xué)成績與物理成績之間沒有關(guān)系.根據(jù)上述列聯(lián)表可以求得,當(dāng)成立時,的概率約為,而這里,
所以我們有的把握認為:學(xué)生的數(shù)學(xué)成績與物理成績之間有關(guān)系.
(Ⅲ)抽到號有種,,,
基本事件有種,,,
,,,
,,,
,,,
,,,
,,,
所以,抽到號的概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今年來,網(wǎng)上購物已經(jīng)成為人們消費的一種趨勢,假設(shè)某網(wǎng)上商城的某種商品每月的銷售量(單位:千件)與銷售價格(單位:元/件)滿足關(guān)系式:,其中,為常數(shù).已知銷售價格為元/件時,每月可售出千件.
(1)求的值;
(2)假設(shè)每件商品的進價為元,試確定銷售價格的值,使該商城每月銷售該商品所獲得的利潤最大.(結(jié)果保留一位小數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小正周期是,且在區(qū)間上單調(diào)遞減.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程
在上有實數(shù)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位招聘員工,有名應(yīng)聘者參加筆試,隨機抽查了其中名應(yīng)聘者筆試試卷,統(tǒng)計他們的成績?nèi)缦卤恚?/span>
分數(shù)段 | |||||||
人數(shù) | 1 | 3 | 6 | 6 | 2 | 1 | 1 |
若按筆試成績擇優(yōu)錄取名參加面試,由此可預(yù)測參加面試的分數(shù)線為( )
A. 分 B. 分 C. 分 D. 分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果某地的財政收入與支出滿足線性回歸方程(單位:億元),其中,如果今年該地區(qū)財政收入10億元,則年支出預(yù)計不會超過( )
A. 10.5億 B. 10億 C. 9.5億 D. 9億
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知e為自然對數(shù)的底數(shù),設(shè)函數(shù)f(x)=(ex﹣1)(x﹣1)k(k=1,2),則( )
A.當(dāng)k=1時,f(x)在x=1處取得極小值
B.當(dāng)k=1時,f(x)在x=1處取得極大值
C.當(dāng)k=2時,f(x)在x=1處取得極小值
D.當(dāng)k=2時,f(x)在x=1處取得極大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)已知是虛數(shù), 是實數(shù).
(1)求為何值時, 有最小值,并求出|的最小值;
(2)設(shè),求證: 為純虛數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】節(jié)日前夕,小李在家門前的樹上掛了兩串彩燈,這兩串彩燈的第一次閃亮相互獨立,且都在通電后的4秒內(nèi)任一時刻等可能發(fā)生,然后每串彩燈以4秒為間隔閃亮,那么這兩串彩燈同時通電后,它們第一次閃亮的時候相差不超過2秒的概率是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com