【題目】要得到函數(shù)y=3cos(2x﹣ )的圖象,可以將函數(shù)y=3sin2x的圖象( )
A.沿x軸向左平移 單位
B.沿x軸向右平移 單位
C.沿x軸向左平移 單位
D.沿x軸向右平移 單位
【答案】A
【解析】解:∵函數(shù) =3sin[ ﹣2x+ ]=3sin( ﹣2x)
=﹣3sin(2x﹣ )=3sin(2x﹣ +π)=3sin(2x+ )=3sin[2(x+ )],
將函數(shù)y=3sin2x的圖象沿x軸向左平移 單位可得 y=3sin[2(x+ )]的圖象,
故選A.
【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)y=Asin(ωx+φ)的圖象變換,掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某消防機(jī)構(gòu)為四個(gè)小區(qū)的居民代表進(jìn)行消防安全知識(shí)宣傳.在代表中,按分層抽樣的方式抽取了10名“幸運(yùn)之星”,“幸運(yùn)之星”每人獲得一份紀(jì)念品.相關(guān)數(shù)據(jù)如下:
小區(qū) | A | B | C | D |
代表人數(shù) | 45 | 60 | 30 | 15 |
(I)求此活動(dòng)中各小區(qū)“幸運(yùn)之星”的人數(shù);
(II)從B小區(qū)和C小區(qū)的“幸運(yùn)之星”中任選兩人進(jìn)行后續(xù)的活動(dòng),求這兩個(gè)人均來自B小區(qū)的概率;
(III)消防機(jī)構(gòu)在B小區(qū)內(nèi),對(duì)參加問答活動(dòng)的居民進(jìn)行了是否有興趣參加消防安全培訓(xùn)的問卷調(diào)查,統(tǒng)計(jì)結(jié)果如下(單位:人):
有興趣 | 無興趣 | 合計(jì) | |
男 | 25 | 5 | 30 |
女 | 15 | 15 | 30 |
合計(jì) | 40 | 20 | 60 |
據(jù)此判斷能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為有興趣參加消防安全培訓(xùn)與性別有關(guān)系?
臨界值表:
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓過點(diǎn),離心率為, , 是橢圓的長軸的兩個(gè)端點(diǎn)(位于右側(cè)),是橢圓在軸正半軸上的頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在經(jīng)過點(diǎn)且斜率為的直線與橢圓交于不同兩點(diǎn)和,使得向量與共線?如果存在,求出直線方程;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,a=btanA,且B為鈍角.
(1)證明:B﹣A= ;
(2)求sinA+sinC的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一副直角三角板(如圖1)拼接,將折起,得到三棱錐(如圖2).
(1)若分別為的中點(diǎn),求證: 平面;
(2)若平面平面,求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人想?yún)⒓印吨袊娫~大會(huì)》比賽,籌辦方要從10首詩司中分別抽出3首讓甲、乙背誦,規(guī)定至少背出其中2首才算合格; 在這10首詩詞中,甲只能背出其中的7首,乙只能背出其中的8首
(1)求抽到甲能背誦的詩詞的數(shù)量的分布列及數(shù)學(xué)期望;
(2)求甲、乙兩人中至少且有一人能合格的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的直角坐標(biāo)方程;
(2)已知點(diǎn)的直角坐標(biāo)為,直線與曲線相交于不同的兩點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com