20.雙曲線3x2-y2=75上一點(diǎn)P到它的一個(gè)焦點(diǎn)的距離等于12,那么點(diǎn)P到它的另一個(gè)焦點(diǎn)的距離等于22.

分析 將雙曲線的方程化為標(biāo)準(zhǔn)方程,可得a,b,c,由c+a=15,c-a=5,可得P,F(xiàn)1在y軸的同側(cè),設(shè)|PF1|=12,運(yùn)用雙曲線的定義,可得|PF2|=2或22,檢驗(yàn)舍去2.

解答 解:雙曲線3x2-y2=75即為
$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{75}$=1,即有a=5,b=5$\sqrt{3}$,c=10,
由c+a=15,c-a=5,可得P,F(xiàn)1在y軸的同側(cè),
設(shè)|PF1|=12,
由雙曲線的定義可得||PF1|-|PF2||=2a=10,
即有|12-|PF2||=10,
解得|PF2|=2或22,
由|PF2|的最小值為c-a=5>2,
即有|PF2|=22,
故答案為:22.

點(diǎn)評(píng) 本題考查雙曲線上的點(diǎn)到一焦點(diǎn)的距離的求法,注意運(yùn)用雙曲線的定義和焦半徑的最小值,考查運(yùn)算能力,屬于基礎(chǔ)題和易錯(cuò)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知不等式ax2+bx+1>0的解集為{x|-$\frac{1}{2}$<x<$\frac{1}{3}$},解不等式x2+bx+a>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列式子正確的是( 。
A.cos(-$\frac{π}{10}$)<cos(-$\frac{π}{9}$)B.tan$\frac{π}{6}$<tan$\frac{2}{7}$πC.sin$\frac{8}{7}$π>sin$\frac{π}{11}$D.cos$\frac{2}{5}$π<cos$\frac{6}{5}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.(普通中學(xué)做)如圖,已知F1、F2為雙曲線的兩焦點(diǎn),等邊三角形AF1F2兩邊的中點(diǎn)M、N在雙曲線上,則該雙曲線的離心率為(  )
A.$\sqrt{3}$+1B.$\sqrt{2}$+1C.$\sqrt{5}$+1D.$\sqrt{5}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直線A1B上.
(Ⅰ)求證:BC⊥A1B;
(Ⅱ)若P是線段AC上一點(diǎn),$AD=\sqrt{3}$,AB=BC=2,三棱錐A1-PBC的體積為$\frac{{\sqrt{3}}}{3}$,求$\frac{AP}{PC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點(diǎn)F1、F2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左,右焦點(diǎn),過點(diǎn)F1的直線l與雙曲線C的左,右兩支分別交于P,Q兩點(diǎn),若△PQF2是以∠PQF2為為直角的等腰直角三角形,e為雙曲線C的離心率,則e2=5+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知點(diǎn)(2,1)在雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的漸近線上,則C的離心率為( 。
A.$\sqrt{5}$B.2C.$\frac{5}{4}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)y=f(x)(x∈R)d的導(dǎo)函數(shù)為f′(x),若f(x)-f(-x)=2x3,且當(dāng)x≥0時(shí),f′(x)>3x2,則不等式f(x)-f(x-1)>3x2-3x+1的解集是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖1,在等腰梯形ABCD中,AB∥CD,E,F(xiàn)分別為AB和CD的中點(diǎn),且AB=EF=2,CD=6,M為BC中點(diǎn),現(xiàn)將梯形BEFC沿EF所在直線折起,使平面EFCB⊥平面EFDA,如圖2所示,N是CD上一點(diǎn),且$CN=\frac{1}{2}ND$.
(Ⅰ)求證:MN∥平面ADFE;
(Ⅱ)求三棱錐F-AMN的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案