A. | $\sqrt{3}$+1 | B. | $\sqrt{2}$+1 | C. | $\sqrt{5}$+1 | D. | $\sqrt{5}$-1 |
分析 設(shè)|F1F2|=2c,由題意可得|MF1|=c,再由等邊三角形的高可得|MF2|=$\sqrt{3}$c,運用雙曲線的定義和離心率公式,計算即可得到所求值.
解答 解:設(shè)|F1F2|=2c,由題意可得|MF1|=c,
由MF2為等邊三角形AF1F2的高,可得:
|MF2|=$\sqrt{3}$c,
由雙曲線的定義可得|MF2|-|MF1|=$\sqrt{3}$c-c,
由e=$\frac{2c}{2a}$=$\frac{2c}{\sqrt{3}c-c}$=1+$\sqrt{3}$,
故選:A.
點評 本題考查雙曲線的離心率的求法,注意運用等邊三角形的性質(zhì)和雙曲線的定義,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\sqrt{2}$,+∞) | B. | [2$\sqrt{2}$,+∞) | C. | [$\frac{\sqrt{6}}{6}$,+∞) | D. | (-∞,0] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{10}$ | B. | $\sqrt{13}$ | C. | $\sqrt{14}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com