分析 (I)由AD⊥平面A1BC得BC⊥AD,由AA1⊥平面ABC得BC⊥AA1,故BC⊥平面A1AB,所以BC⊥A1B;
(II)設(shè)PC=x,用x表示出棱錐A1-BPC的體積,列出方程解出x,得到AP和PC的值.
解答 (Ⅰ)證明∵AD⊥平面A1BC,BC?平面A1BC,
∴AD⊥BC.
∵AA1⊥平面ABC,BC?平面ABC,
∴AA1⊥BC.
又∵AA1∩AD=A,AA1?平面AA1B,AD?平面AA1B,
∴BC⊥平面AA1B,∵A1B?平面AA1B,
∴BC⊥A1B.
(Ⅱ)解:設(shè)PC=x,過(guò)點(diǎn)B作BE⊥AC于點(diǎn)E.
由(Ⅰ)知BC⊥平面AA1B1B,∴BC⊥AB,
∵AB=BC=2,∴$AC=2\sqrt{2}$,$BE=\sqrt{2}$.
∴${S_{△PBC}}=\frac{1}{2}BE•CP=\frac{{\sqrt{2}}}{2}x$,
∵AD⊥平面A1BC,其垂足D落在直線(xiàn)A1B上,
∴AD⊥A1B.∴BD=$\sqrt{A{B}^{2}-A{D}^{2}}$=1,又∵AA1⊥AB,
∴Rt△ABD∽R(shí)t△A1BA,∴$\frac{BD}{AB}=\frac{AD}{A{A}_{1}}$,
∴$A{A_1}=2\sqrt{3}$.
∴${V_{{A_1}-PBC}}=\frac{1}{3}{S_{△PBC}}•A{A_1}=\frac{{\sqrt{6}}}{3}x$=$\frac{\sqrt{3}}{3}$.
解得:$x=\frac{{\sqrt{2}}}{2}$,
∴$AP=\frac{{3\sqrt{2}}}{2}$.∴$\frac{AP}{PC}=3$.
點(diǎn)評(píng) 本題考查了線(xiàn)面垂直的判定與性質(zhì),棱錐的體積計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{π}{6}$,0) | B. | ($\frac{π}{4}$,0) | C. | ($\frac{2π}{3}$,0) | D. | ($\frac{5π}{6}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,$\sqrt{2}$)∪($\sqrt{2}$,+∞) | B. | ($\sqrt{2}$,+∞) | C. | (1,$\sqrt{2}$) | D. | ($\sqrt{2}$,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com