已知函數(shù)f(x)=
1
2
sin(2x+
π
4
)+1.
(Ⅰ)求它的振幅、最小正周期、初相;
(Ⅱ)畫出函數(shù)y=f(x)在[-
π
2
,
π
2
]上的圖象.
考點(diǎn):正弦函數(shù)的圖象,五點(diǎn)法作函數(shù)y=Asin(ωx+φ)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)根據(jù)振幅、最小正周期、初相的定義求出函數(shù)f(x))=
1
2
sin(2x+
π
4
)+1的振幅、最小正周期、初相.
(Ⅱ)用五點(diǎn)法畫出函數(shù)y=f(x)在[-
π
2
,
π
2
]上的圖象.
解答: 解:(Ⅰ)對于函數(shù)f(x)=
1
2
sin(2x+
π
4
)+1,振幅A=
1
2
,最小正周期T=
2
=π,
初相為
π
4

(Ⅱ)用五點(diǎn)法畫出函數(shù)y=f(x)在[-
π
2
π
2
]上的圖象:
由x∈[-
π
2
,
π
2
],可得 2x+
π
4
∈[-
4
,
4
],
列表:
 2x+
π
4
-
4
-
π
2
 0 
π
2
 π 
4
 x-
π
2
-
8
-
π
8
 
π
8
 
8
-
π
2
 
 y-
2
4
-
1
2
 0 
1
2
 0-
2
4
畫圖:
點(diǎn)評:本題主要考查正弦函數(shù)的圖象特征,本題主要考查用五點(diǎn)法作函數(shù)y=Asin(ωx+φ)在一個(gè)周期上的簡圖,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于各項(xiàng)均為正數(shù)的無窮數(shù)列{an},記bn=
an+1
an
(n∈N*),給出下列定義:
①若存在實(shí)數(shù)M,使an≤M成立,則稱數(shù)列{an}為“有上界數(shù)列”;
②若數(shù)列{an}為有上界數(shù)列,且存在n0(n0∈N*),使a n0=M成立,則稱數(shù)列{an}為“有最大值數(shù)列”;
③若bn+1-bn<0,則稱數(shù)列{an}為“比減小數(shù)列”.
(Ⅰ)根據(jù)上述定義,判斷數(shù)列{
1
n
}是何種數(shù)列?
(Ⅱ)若數(shù)列{an}中,a1=
2
,an+1=
2+an
,求證:數(shù)列{an}既是有上界數(shù)列又是比減小數(shù)列;
(Ⅲ)若數(shù)列{an}是單調(diào)遞增數(shù)列,且是有上界數(shù)列,但不是有最大值數(shù)列,求證:?n∈N*,bn+1-bn≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐P-ABC中,PA⊥平面ABC,AB⊥BC.
(1)證明:平面PAB⊥平面PBC;
(2)若PA=
6
,AC=
3
,PB與底面ABC成60°角,E,F(xiàn)分別是PB與PC的中點(diǎn),S是線段EF上任意一動(dòng)點(diǎn)(可與端點(diǎn)重合),求多面體SABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=3,|
b
|=4,
a
b
的夾角為
3
4
π,求:
(1)(3
a
-2
b
)•(
a
-2
b

(2)|
a
+
b
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,曲線ρsin2θ=4cosθ的焦點(diǎn)的極坐標(biāo)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)給定三個(gè)向量
a
=(3,2),
b
=(-1,2),
c
=(4,1)
(1)求滿足
a
=m
b
+n
c
的實(shí)數(shù)m,n;
(2)(
a
+k
c
)∥(2
b
-
a
),求實(shí)數(shù)k;
(3)設(shè)
d
=(x,y)滿足(
d
-
c
)∥(
a
+
b
),且|
d
-
c
|=1,求
d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=||x-1|-1|的圖象與y=m有4個(gè)不同的公共點(diǎn)為a,b,c,d,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+ax2-a2x+2
(Ⅰ)如果函數(shù)f(x)的單調(diào)遞減區(qū)間為(-
1
3
,1),求函數(shù)f(x)的解析式;
(Ⅱ)若a≠0,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若不等式2xlnx≤f′(x)+a2+1的解集為P,且(0,+∞)?P,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)S是不等式x2-x-6<0的解集,整數(shù)m,n∈S,
(1)記“使得m+n=0成立的有序數(shù)組(m,n)”為事件A,試列舉A包含的基本事件;
(2)設(shè)ξ=m2,求ξ所有可能的值及其概率.

查看答案和解析>>

同步練習(xí)冊答案