若函數(shù)f(x)=
ax2-3ax+a+5
的定義域為R,則a的取值范圍是
 
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)成立的條件,轉(zhuǎn)化為不等式ax2-3ax+a+5≥0恒成立,對a討論,即可得到結(jié)論.
解答: 解:∵函數(shù)f(x)的定義域為R,
則等價為不等式ax2-3ax+a+5≥0恒成立,
若a=0,不等式等價為5>0,滿足條件,
若a≠0,則不等式滿足條件
a>0
△=9a2-4a(a+5)=5a2-20a≤0
,
解得0<a≤4,
綜上0≤a≤4,
即a的取值范圍是[0,4].
故答案為:[0,4].
點評:本題主要考查函數(shù)的定義域的應(yīng)用,根據(jù)條件轉(zhuǎn)化為不等式恒成立是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(2x+
π
3
)
的圖象按向量
a
平移后所得的圖象關(guān)于點(-
π
12
,0)
中心對稱.則向量
a
可以為( 。
A、(
π
12
,0)
B、(
π
6
,0)
C、(-
π
12
,0)
D、(-
π
6
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,則該程序運行后輸出的k值是( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組中的函數(shù)f(x)與g(x)相同的是( 。
A、f(x)=|x|,g(x)=(
x
 )2
B、f(x)=
x2
,g(x)=x
C、f(x)=
x2-1
x+1
,g(x)=x-1
D、f(x)=x0,g(x)=
x
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈R,i為虛數(shù)單位,若(1-2i)(x+i)=4-3i,則x的值等于( 。
A、-6B、-2C、2D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓的方程為(x-1)2+(y-2)2=4,該圓圓心到直線y=x-2的距離為(  )
A、
6
2
B、
3
6
2
C、
2
2
D、
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,直線l1經(jīng)過橢圓的上頂點A和右頂點B,并且和圓x2+y2=
4
5
相切.
(1)求橢圓C的方程;
(2)設(shè)直線l2:y=kx+m(|m|∈[
1
2
,1]) 與橢圓C相交于M,N兩點,以線段OM,ON為鄰邊作平行四邊行OMPN,其中頂點P在橢圓C上,O為坐標(biāo)原點,求|OP|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上一點P(m,n)(m>0,n>0),曲線Q:(x-m)2+(y-n)2=m2+n2經(jīng)過橢圓C的長軸端點,與兩坐標(biāo)軸的相交弦長相等,且OP=
2
(其中O上坐標(biāo)原點).
(1)求橢圓C點方程;
(2)設(shè)點G為橢圓長軸上一點,當(dāng)過G的直線l與曲線Q的相交弦長最大時,直線l交橢圓于A,B,過點G且與直線l垂直的直線l′交橢圓于C,D,試問:是否存在直線l,使得四邊形ACBD的面積等于4?若存在,求出一條對應(yīng)的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公差不等于0的等差數(shù)列,a1=2且a2,a4,a5成等比數(shù)列,若bn=
1
n(an+2)
,則數(shù)列{bn}的前n項餓的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案