9.如圖所示,已知點A(-1,0)是拋物線的準線與x軸的焦點,過點A的直線與拋物線交于M,N兩點,過點M的直線交拋物線于另一個點Q,且直線MQ過點B(1,-1).
(1)求拋物線的方程;
(2)求證:直線QN過定點.

分析 (1)由題意,拋物線的準線方程為x=-1,即可求出拋物線的方程;
(2)設AM的方程為y=k(x+1),代入拋物線的方程,可得ky2-4y+4k=0,設M(x1,y1),N(x2,y2),Q(x3,y3),則y1y2=4,直線MB的方程為y+1=$\frac{4}{{y}_{1}+{y}_{3}}$(x-1),可得y2y3+4(y2+y3)+4=0,直線QN的方程為y-y2=$\frac{4}{{y}_{2}+{y}_{3}}$(x-x2),可得y2y3-y(y2+y3)+4x=0,即可得出直線QN過定點.

解答 (1)解:由題意,拋物線的準線方程為x=-1,
∴拋物線的方程為y2=4x;
(2)證明:設AM的方程為y=k(x+1),代入拋物線的方程,可得ky2-4y+4k=0
設M(x1,y1),N(x2,y2),Q(x3,y3),則y1y2=4,
由kMQ=$\frac{{y}_{1}-{y}_{3}}{{x}_{1}-{x}_{3}}$=$\frac{{y}_{1}-{y}_{3}}{\frac{{{y}_{1}}^{2}}{4}-\frac{{{y}_{3}}^{2}}{4}}$=$\frac{4}{{y}_{1}+{y}_{3}}$,
直線MB的方程為y+1=$\frac{4}{{y}_{1}+{y}_{3}}$(x-1),
∴y1+1=$\frac{4}{{y}_{1}+{y}_{3}}$(x1-1),
可得y1=-$\frac{4+{y}_{3}}{1+{y}_{3}}$,
∴$\frac{4}{{y}_{2}}$=-$\frac{4+{y}_{3}}{1+{y}_{3}}$,
∴y2y3+4(y2+y3)+4=0
直線QN的方程為y-y2=$\frac{4}{{y}_{2}+{y}_{3}}$(x-x2
可得y2y3-y(y2+y3)+4x=0,
∴x=1,y=-4,
∴直線QN過定點(1,-4)

點評 本題考查拋物線的方程,考查直線與拋物線的位置關系,考查直線過定點,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.f(x)=ax2-x+1有一正零點與一負零點,則a的取值范圍是(-∞,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.點P(4,1)平分拋物線y2=6x的一條弦,則這條弦所在直線的方程是3x-y-11=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知下列命題:①要得到函數(shù)y=cos(x-$\frac{π}{6}$)的圖象,需把函數(shù)y=sinx的圖象上所有點向左平移$\frac{π}{3}$個單位長度;②函數(shù)f(x)=$\sqrt{2}$sin(2x+$\frac{π}{3}$)的圖象關于直線x=$\frac{π}{3}$對稱;③y=sinωx(ω>0)在區(qū)間[0,1]上至少出現(xiàn)了100次最小值,則ω≥$\frac{399}{2}$π.其中正確命題的序號是①③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在△ABC中,若tan$\frac{A}{2}$•tan$\frac{B}{2}$=$\frac{1}{4}$,則tan$\frac{C}{2}$的最大值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),向量$\overrightarrow$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$).
(1)若x∈R,求f(x)=|$\overrightarrow{a}$+$\overrightarrow$|的單調(diào)增區(qū)間
(2)若g(x)=$\overrightarrow{a}$•$\overrightarrow$-2λ|$\overrightarrow{a}$+$\overrightarrow$|的最小值是-$\frac{3}{2}$,其中λ>0.x∈[0,$\frac{π}{2}$],求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的左右焦點分別為F1、F2,P是雙曲線上的一點,若|PF1|=7,則△PF1F2最大內(nèi)角的余弦值為( 。
A.-$\frac{1}{7}$B.$\frac{1}{7}$C.$\frac{59}{117}$D.$\frac{11}{13}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.cos$\frac{π}{12}$cos$\frac{7π}{12}$的值是( 。
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.$\frac{\sqrt{3}}{4}$D.-$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.對任意復數(shù)z=x+yi(x、y∈R),定義g(z)=3x(cosy+isiny).
(1)若g(z)=3,求相應的復數(shù)z;
(2)計算g(2+$\frac{π}{4}$i),g(-1+$\frac{π}{4}$i),g(1+$\frac{π}{2}$i)并構(gòu)造它們之間的一個等式,由此發(fā)現(xiàn)一個更一般的等式,并加以證明.

查看答案和解析>>

同步練習冊答案