【題目】矩形ABCD中,,沿對(duì)角線AC將三角形ADC折起,得到四面體,四面體 外接球表面積為,當(dāng)四面體的體積取最大值時(shí),四面體的表面積為( )
A.B.C.D.
【答案】B
【解析】
由四面體的外接球表面積計(jì)算出的長(zhǎng)度,當(dāng)體積最大時(shí),計(jì)算出對(duì)應(yīng)的棱長(zhǎng),再計(jì)算表面積即可.
因三棱錐的外接球表面積為,故其外接球半徑為2,
容易知外接球的球心在AC的中點(diǎn)處,AC為外接球直徑,
此時(shí)即可得,
在中由勾股定理可得,
故當(dāng)四面體體積最大時(shí),則平面DAC平面ABC,
過(guò)D點(diǎn)作AC的垂線,垂足為H,連接BH,如圖所示:
因?yàn)槠矫?/span>DAC平面ABC,故
DH平面ABC,則DH.
則
在中,
在中,因?yàn)?/span>,
由余弦定理可得:
在中,因?yàn)?/span>,
由勾股定理可得:,
在中,因?yàn)?/span>,
由余弦定理可得
故解得
故四面體的表面積=
=
=
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=4x的焦點(diǎn)為F,過(guò)點(diǎn)F且斜率為1的直線與拋物線C交于A、B兩點(diǎn),若在以線段AB為直徑的圓上存在兩點(diǎn)M、N,在直線:x+y+a=0上存在一點(diǎn)Q,使得∠MQN=90°,則實(shí)數(shù)a的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,AB=1,AD,且∠BAD=45°,以BD為折線,把△ABD折起,使AB⊥DC,連接AC,得到三棱錐A﹣BCD.
(1)求證:平面ABD⊥平面BCD;
(2)求二面角B﹣AC﹣D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,b+c=10,a=,5bsinAcosC+5csinAcosB=3a.
(1)求A的余弦值;
(2)求b和c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)報(bào)道,全國(guó)很多省市將英語(yǔ)考試作為高考改革的重點(diǎn),一時(shí)間“英語(yǔ)考試該如何改革”引起廣泛關(guān)注,為了解某地區(qū)學(xué)生和包括老師、家長(zhǎng)在內(nèi)的社會(huì)人士對(duì)高考英語(yǔ)改革的看法,某媒體在該地區(qū)選擇了3 000人進(jìn)行調(diào)查,就“是否取消英語(yǔ)聽(tīng)力”問(wèn)題進(jìn)行了問(wèn)卷調(diào)查統(tǒng)計(jì),結(jié)果如下表:
態(tài)度 | |||
調(diào)查人群 | 應(yīng)該取消 | 應(yīng)該保留 | 無(wú)所謂 |
在校學(xué)生 | 2100人 | 120人 | y人 |
社會(huì)人士 | 500人 | x人 | z人 |
已知在全體樣本中隨機(jī)抽取1人,抽到持“應(yīng)該保留”態(tài)度的人的概率為0.06.
(1)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取300人進(jìn)行問(wèn)卷訪談,問(wèn)應(yīng)在持“無(wú)所謂”態(tài)度的人中抽取多少人?
(2)在持“應(yīng)該保留”態(tài)度的人中,用分層抽樣的方法抽取6人,然后從這6人中隨機(jī)抽取2人,求這2人中恰好有1個(gè)人為在校學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面是邊長(zhǎng)為2的正方形,側(cè)面底面,為上的點(diǎn),且平面
(1)求證:平面平面;
(2)當(dāng)三棱錐體積最大時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形中,,,四邊形
為矩形,平面平面,.
(I)求證:平面;
(II)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為,
試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正實(shí)數(shù)列a1,a2,…滿足對(duì)于每個(gè)正整數(shù)k,均有,證明:
(Ⅰ)a1+a2≥2;
(Ⅱ)對(duì)于每個(gè)正整數(shù)n≥2,均有a1+a2+…+an≥n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“工資條里顯紅利,個(gè)稅新政入民心”.隨著2019年新年鐘聲的敲響,我國(guó)自1980年以來(lái),力度最大的一次個(gè)人所得稅(簡(jiǎn)稱個(gè)稅)改革迎來(lái)了全面實(shí)施的階段.某從業(yè)者為了解自己在個(gè)稅新政下能享受多少稅收紅利,繪制了他在26歲-35歲(2009年-2018年)之間各年的月平均收入(單位:千元)的散點(diǎn)圖:(注:年齡代碼1-10分別對(duì)應(yīng)年齡26-35歲)
(1)由散點(diǎn)圖知,可用回歸模型擬合與的關(guān)系,試根據(jù)有關(guān)數(shù)據(jù)建立關(guān)于的回歸方程;
(2)如果該從業(yè)者在個(gè)稅新政下的專項(xiàng)附加扣除為3000元/月,試?yán)茫?)的結(jié)果,將月平均收入視為月收入,根據(jù)新舊個(gè)稅政策,估計(jì)他36歲時(shí)每個(gè)月少繳納的個(gè)人所得稅.
附注:①參考數(shù)據(jù):,,,,
,,,其中:取,.
②參考公式:回歸方程中斜率和截距的最小二乘估計(jì)分別為,.
③新舊個(gè)稅政策下每月應(yīng)納稅所得額(含稅)計(jì)算方法及稅率表如下:
舊個(gè)稅稅率表(個(gè)稅起征點(diǎn)3500元) | 新個(gè)稅稅率表(個(gè)稅起征點(diǎn)5000元) | |||
繳稅 級(jí)數(shù) | 每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn) | 稅率 | 每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專項(xiàng)附加扣除 | 稅率 |
1 | 不超過(guò)1500元的都分 | 3 | 不超過(guò)3000元的都分 | 3 |
2 | 超過(guò)1500元至4500元的部分 | 10 | 超過(guò)3000元至12000元的部分 | 10 |
3 | 超過(guò)4500元至9000元的部分 | 20 | 超過(guò)12000元至25000元的部分 | 20 |
4 | 超過(guò)9000元至35000元的部分 | 25 | 超過(guò)25000元至35000元的部分 | 25 |
5 | 超過(guò)35000元至55000元的部分 | 30 | 超過(guò)35000元至55000元的部分 | 30 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com