精英家教網 > 高中數學 > 題目詳情

【題目】如圖,四棱錐中,底面是邊長為2的正方形,側面底面,上的點,且平面

(1)求證:平面平面;

(2)當三棱錐體積最大時,求二面角的余弦值.

【答案】(1)見證明;(2.

【解析】

1)通過側面底面,可以證明出,這樣可以證明出

,再利用平面,可以證明出,這樣利用線面垂直的判定定理可以證明出,最后利用面面垂直的判定定理可以證明出平面平面;

(2)利用三棱錐體積公式可得,

利用基本不等式可以求出三棱錐體積最大值,此時可以求出的長度,以點為坐標原點,以,分別作為軸,軸和軸,建立空間直角坐標系.求出相應點的坐標,求出面的一個法向量,面的一個法向量,利用空間向量數量積的運算公式,可以求出二面角的余弦值.

(1)證明:∵側面底面,側面底面,四邊形為正方形,∴,

,

,

平面,

,

,平面

,

∴平面平面

(2)

求三棱錐體積的最大值,只需求的最大值.

,由(1)知,

,

當且僅當,即時,

的最大值為

如圖所示,分別取線段,中點,,連接,,

以點為坐標原點,以分別作為軸,軸和軸,建立空間直角坐標系

由已知

所以,

為面的一個法向量,

則有

易知為面的一個法向量,

二面角的平面角為,為銳角

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底而ABCD是菱形,且PA=AD=2,∠PAD=BAD=120°,EF分別為PD,BD的中點,且

1)求證:平面PAD⊥平面ABCD;

2)求銳二面角E-AC-D的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是定義在上的奇函數,且在區(qū)間上單調遞減,.設,則滿足的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】關于莖葉圖的說法,結論錯誤的一個是( )

A. 甲的極差是29 B. 甲的中位數是25

C. 乙的眾數是21 D. 甲的平均數比乙的大

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】矩形ABCD中,,沿對角線AC將三角形ADC折起,得到四面體,四面體 外接球表面積為,當四面體的體積取最大值時,四面體的表面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)生產甲、乙兩種產品,已知生產每噸甲產品要用A原料3噸,B原料2噸;生產每噸乙產品要用A原料1噸,B原料3噸.銷售每噸甲產品可獲得利潤5萬元,每噸乙產品可獲得利潤3萬元.該企業(yè)在一個生產周期內消耗A原料不超過13噸,B原料不超過18噸.

1)列出甲、乙兩種產品滿足的關系式,并畫出相應的平面區(qū)域;

2)在一個生產周期內該企業(yè)生產甲、乙兩種產品各多少噸時可獲得利潤最大,最大利潤是多少?

(用線性規(guī)劃求解要畫出規(guī)范的圖形及具體的解答過程)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《中國詩詞大會》是央視推出的一檔以“賞中華詩詞,尋文化基因,品生活之美”為宗旨的大型文化類競賽節(jié)目,邀請全國各個年齡段、各個領域的詩詞愛好者共同參與詩詞知識比拼!鞍偃藞F”由一百多位來自全國各地的選手組成,成員上至古稀老人,下至垂髫小兒,人數按照年齡分組統(tǒng)計如下表:

分組(年齡)

頻數(人)

(1)用分層抽樣的方法從“百人團”中抽取人參加挑戰(zhàn),求從這三個不同年齡組中分別抽取的挑戰(zhàn)者的人數;

(2)在(1)中抽出的人中,任選人參加一對一的對抗比賽,求這人來自同一年齡組的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在棱長均相等的四棱錐, 為底面正方形的中心, ,分別為側棱,的中點,有下列結論正確的有:( )

A.∥平面B.平面∥平面

C.直線與直線所成角的大小為D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是某學校研究性課題《什么樣的活動最能促進同學們進行垃圾分類》向題的統(tǒng)計圖(每個受訪者都只能在問卷的5個活動中選擇一個),以下結論錯誤的是( 。

A. 回答該問卷的總人數不可能是100

B. 回答該問卷的受訪者中,選擇“設置分類明確的垃圾桶”的人數最多

C. 回答該問卷的受訪者中,選擇“學校團委會宣傳”的人數最少

D. 回答該問卷的受訪者中,選擇“公益廣告”的人數比選擇“學校要求”的少8

查看答案和解析>>

同步練習冊答案