分析 (1)連接AC交BD于點(diǎn)O,連接OE,由中位線定理得出PA∥OE,故結(jié)論成立;
(2)VE-ABCD=$\frac{1}{2}$VP-ABCD,代入體積公式計(jì)算即可.
解答 證明:(1)連接AC交BD于點(diǎn)O,連接OE.
∵四邊形ABCD是菱形,
∴O為AC的中點(diǎn),又E為PC的中點(diǎn),
∴EO∥PA.
∵PA?平面BDE,EO?平面BDE,
∴PA∥平面BDE.
(2)S菱形ABCD=$\frac{1}{2}AC•BD$=12,
VP-ABCD=$\frac{1}{3}$S菱形ABCD•PA=$\frac{1}{3}×12×3$=12.
∵E為PC的中點(diǎn),
∴VE-ABCD=$\frac{1}{2}$VP-ABCD=6.
點(diǎn)評(píng) 本題考查了線面平行的判定,棱錐的體積計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 40 | B. | 20 | C. | 12 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x,y∈R,若x≠0或y≠0,則xy≠0 | B. | ?x,y∈R,若x≠0且y≠0,則xy≠0 | ||
C. | ?x,y∈R,若x≠0或y≠0,則xy≠0 | D. | ?x,y∈R,若x≠0且y≠0,則xy≠0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20≤x≤30 | B. | 20≤x≤45 | C. | 15≤x≤30 | D. | 15≤x≤45 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,-1]∪[1,2] | B. | [-2,-1]∪[0,1] | C. | [-2,0]∪[1,2] | D. | [-1,0]∪[1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{24}{5}$ | B. | 5 | C. | 6 | D. | 8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com