14.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$,x∈R
(Ⅰ)求函數(shù)f(x)的最小正周期和在區(qū)間(0,$\frac{π}{2}$)上的值域;
(Ⅱ)設(shè)在△ABC中,內(nèi)角所對邊的邊長分別為,且c=2$\sqrt{3}$,f(C)=0,若sinB=2sinA,求a,b的值.

分析 (Ⅰ)首先利用三角函數(shù)的關(guān)系式的恒等變換把函數(shù)的關(guān)系式變性成正弦型函數(shù),進(jìn)一步求出函數(shù)的周期和最值.
(Ⅱ)利用函數(shù)的關(guān)系式,首先根據(jù)三角形的交的他范圍,進(jìn)一步求出C的大小,最后利用正弦和余弦定理求出結(jié)果.

解答 解:(Ⅰ)f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$,
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1+cos2x}{2}$-$\frac{1}{2}$,
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x-1,
=sin(2x-$\frac{π}{6}$)-1.
∴f(x)的最小正周期是$T=\frac{2π}{2}=π$.
∵0<x<$\frac{π}{2}$,則$f(x)∈(-\frac{3}{2},0]$;     
(Ⅱ)由$f(C)=sin(2C-\frac{π}{6})-1=0$,得到$sin(2C-\frac{π}{6})=1$,
∴$2C-\frac{π}{6}=\frac{π}{2}$,即$C=\frac{π}{3}$,
∵sinB=2sinA,
∴由正弦定理得b=2a①,
又$c=\sqrt{3}$,
∴由余弦定理,得${{c}^{2}}={{a}^{2}}+{^{2}}-2abcos\frac{π}{3}$,即a2+b2-ab②,
聯(lián)立①②解得:$\left\{\begin{array}{l}{a=2}\\{b=4}\end{array}\right.$.

點評 本題考查了倍角公式、和差公式三角函數(shù)的周期公式、正弦函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{x-1}{{lnx-m{x^2}}}$,m∈R.
(Ⅰ)若1<x<2時,f(x)>1恒成立,求m的取值范圍;
(Ⅱ)若m=0時,令an+1=f(an),n∈N*,a1=$\sqrt{e}$,求證:2nlnan≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=x5+2x3+3x2+x+1,應(yīng)用秦九韶算法計算x=3時的值時,f(x)=328.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知cosα=-$\frac{4}{5}$,α∈(π,$\frac{3π}{2}$),則sin$\frac{α}{2}$=$\frac{{3\sqrt{10}}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知a,b,c,d是不全為零的實數(shù),函數(shù)f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d.若f(x)的零點組成集合A≠∅,g(f(x))的零點組成集合B,A=B.
(1)求d的值;
(2)若a=0,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax.
(1)?p≠q∈($\frac{2}{3}$,1),$\frac{f(p)-f(q)}{p-q}$>0恒成立,求實數(shù)a的取值范圍;
(2)?p≠q∈($\frac{2}{3}$,1),$\frac{f(p+2)-f(q+2)}{p-q}$>1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖所示的四棱錐P-ABCD中,底面ABCD為菱形,PA⊥平面ABCD,E為PC的中點.
(1)求證:PA∥平面BDE.
(2)設(shè)AC=6,BD=4,PA=3,求四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.命題“?x>1,使得x2≥2”的否定是?x>1,使得x2<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知四邊形ABCD是矩形,AB=2BC=2,三角形PAB是正三角形,且平面ABCD⊥平面PCD.
(Ⅰ)若O是CD的中點,證明:BO⊥PA;
(Ⅱ)求平面PAB與平面PAD夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案