【題目】已知拋物線的焦點(diǎn)為,為坐標(biāo)原點(diǎn),過點(diǎn)的直線交于、兩點(diǎn).

1)若直線與圓相切,求直線的方程;

2)若直線軸的交點(diǎn)為,且,試探究:是否為定值.若為定值,求出該定值,若不為定值,試說明理由.

【答案】1;(2為定值.

【解析】

1)對直線的斜率是否存在進(jìn)行分類討論,由直線與圓相切,得出圓心到直線的距離等于半徑,進(jìn)而可求得直線的方程;

2)對直線的斜率是否存在進(jìn)行分類討論,可知當(dāng)直線的斜率不存在時(shí)不滿足題意,在直線的斜率存在時(shí),設(shè)直線的方程為,與拋物線的方程聯(lián)立,列出韋達(dá)定理,利用向量的坐標(biāo)運(yùn)算得出關(guān)于、的表達(dá)式,代入韋達(dá)定理化簡計(jì)算可求得的值.

1)由已知得.

當(dāng)直線的斜率不存在時(shí),直線的方程為,此時(shí),直線與圓相交,不合乎題意;

當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,即

由直線與圓相切,得,解得.

綜上所述,直線的方程為;

2)當(dāng)直線的斜率不存在時(shí),直線的方程為,則直線與拋物線只有一個(gè)交點(diǎn),不合乎題意;

當(dāng)直線軸不重合時(shí),設(shè)直線的方程為,設(shè)、.

,則直線軸平行,不合乎題意,所以.

聯(lián)立,消去并整理得,由韋達(dá)定理得,

易知,由,得,

,同理可得

所以

所以為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為徹底打贏脫貧攻堅(jiān)戰(zhàn),2020年春,某市政府投入資金幫扶某農(nóng)戶種植蔬菜大棚脫貧致富,若該農(nóng)戶計(jì)劃種植冬瓜和茄子,總面積不超過15畝,幫扶資金不超過4萬元,冬瓜每畝產(chǎn)量10 000斤,成本2000元,每斤售價(jià)0.5元,茄子每畝產(chǎn)量5000斤,成本3000元,每斤售價(jià)1.4元,則該農(nóng)戶種植冬瓜和茄子利潤的最大值為(

A.4萬元B.5.5萬元C.6.5萬元D.10萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某志愿者服務(wù)網(wǎng)站在線招募志愿者,當(dāng)報(bào)名人數(shù)超過計(jì)劃招募人數(shù)時(shí),將采用隨機(jī)抽取的方法招募志愿者,如表記錄了A,B,C,D四個(gè)項(xiàng)目最終的招募情況,其中有兩個(gè)數(shù)據(jù)模糊,記為a,b.

甲同學(xué)報(bào)名參加了這四個(gè)志愿者服務(wù)項(xiàng)目,記ξ為甲同學(xué)最終被招募的項(xiàng)目個(gè)數(shù),已知Pξ=0Pξ=4.

(Ⅰ)求甲同學(xué)至多獲得三個(gè)項(xiàng)目招募的概率;

(Ⅱ)求a,b的值;

(Ⅲ)假設(shè)有十名報(bào)了項(xiàng)目A的志愿者(不包含甲)調(diào)整到項(xiàng)目D,試判斷Eξ如何變化(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最大值為,其圖像相鄰的兩條對稱軸之間的距離為,且的圖像關(guān)于點(diǎn)對稱,則下列結(jié)論正確的是( .

A.函數(shù)的圖像關(guān)于直線對稱

B.當(dāng)時(shí),函數(shù)的最小值為

C.,則的值為

D.要得到函數(shù)的圖像,只需要將的圖像向右平移個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓)的離心率是,點(diǎn)在短軸上,且。

(1)球橢圓的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正四面體PABC的棱長均為a,O為正四面體PABC的外接球的球心,過點(diǎn)O作平行于底面ABC的平面截正四面體PABC,得到三棱錐PA1B1C1和三棱臺ABCA1B1C1,那么三棱錐PA1B1C1的外接球的表面積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某雜肉觀賞區(qū)改造建筑用地平面示意圖如圖所示、經(jīng)規(guī)劃調(diào)研確定,雜肉觀賞區(qū)改造規(guī)劃建筑用地區(qū)域是半徑為的圓,該圓面的內(nèi)接四邊形是原雜肉觀賞區(qū)建筑用地,測量可知邊界千米,千米,千米.

1)請計(jì)算原雜肉觀賞區(qū)建筑用地的面積及圓面的半徑的值;

2)因地理?xiàng)l件的限制,邊界不能變更,而邊界可以調(diào)整,為了提高雜肉觀賞區(qū)觀賞的時(shí)長,請?jiān)趫A弧上設(shè)計(jì)一點(diǎn),使得雜肉觀賞區(qū)改造的新建筑用地的周長最大,并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】垃圾分類是對垃圾進(jìn)行有效處置的一種科學(xué)管理方法,為了了解居民對垃圾分類的知曉率和參與率,引導(dǎo)居民積極行動(dòng),科學(xué)地進(jìn)行垃圾分類,某小區(qū)隨機(jī)抽取年齡在區(qū)間上的50人進(jìn)行調(diào)研,統(tǒng)計(jì)出年齡頻數(shù)分布及了解垃圾分類的人數(shù)如下表:

年齡

頻數(shù)

5

10

10

15

5

5

了解

4

5

8

12

2

1

1)填寫下面2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為以65歲為分界點(diǎn)居民對了解垃圾分類的有關(guān)知識有差異;

年齡低于65歲的人數(shù)

年齡不低于65歲的人數(shù)

合計(jì)

了解

不了解

合計(jì)

2)若對年齡在,的被調(diào)研人中各隨機(jī)選取2人進(jìn)行深入調(diào)研,記選中的4人中不了解垃圾分類的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望

參考公式和數(shù)據(jù)

,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年雙十一落下帷幕,天貓交易額定格在268(單位:十億元)人民幣(下同),再創(chuàng)新高,比去年218(十億元)多了50(十億元).這些數(shù)字的背后,除了是消費(fèi)者買買買的表現(xiàn),更是購物車?yán)镏袊孪M(fèi)的奇跡,為了研究歷年銷售額的變化趨勢,一機(jī)構(gòu)統(tǒng)計(jì)了2010年到2019年天貓雙十一的銷售額數(shù)據(jù)y(單位:十億元),繪制如表:

年份

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

編號x

1

2

3

4

5

6

7

8

9

10

銷售額y

0.9

8.7

22.4

41

65

94

132.5

172.5

218

268

根據(jù)以上數(shù)據(jù)繪制散點(diǎn)圖,如圖所示

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)適宜作為銷售額關(guān)于的回歸方程類型?(給出判斷即可,不必說明理由)

2)根據(jù)(1)的判斷結(jié)果及如表中的數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測2020年天貓雙十一銷售額;(注:數(shù)據(jù)保留小數(shù)點(diǎn)后一位)

3)把銷售超過100(十億元)的年份叫暢銷年,把銷售額超過200(十億元)的年份叫狂歡年,從2010年到2019年這十年的暢銷年中任取2個(gè),求至少取到一個(gè)狂歡年的概率.

參考數(shù)據(jù):

參考公式:

對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別,

查看答案和解析>>

同步練習(xí)冊答案