已知a是實(shí)數(shù),函數(shù)f(x)=x3-2ax2-4x+4a.
(1)當(dāng)a=1時(shí),f(x)的極值.
(2)若f′(-1)=0,求實(shí)數(shù)a的值.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)a=1時(shí),f′(x)=3x2-4x-4,由此利用導(dǎo)數(shù)性質(zhì)能求出f(x)的極值.
(2)由已知得f′(x)=3x2-4ax-4,由f′(-1)=0,能求出a=
1
4
解答: 解:(1)a=1時(shí),f(x)=x3-2x2-4x+4.
∴f′(x)=3x2-4x-4,
由f′(x)=0,得x=-
2
3
或x=2,
當(dāng)x∈(-∞,-
3
2
)時(shí),f′(x)>0;當(dāng)x∈(-
3
2
,2)時(shí),f′(x)<0;
當(dāng)x∈(2,+∞)時(shí),f′(x)>0.
∴f(x)的增區(qū)間是(-∞,-
2
3
),(2,+∞);減區(qū)間是(-
2
3
,2),
∴f(x)極小值=f(2)=-4,f(x)極大值=f(-
2
3
)=
148
27

(2)∵f(x)=x3-2ax2-4x+4a,
∴f′(x)=3x2-4ax-4,
∵f′(-1)=0,
∴f′(-1)=3+4a-4=0,
解得a=
1
4
點(diǎn)評:本題考查函數(shù)的極大值和極小值的求法,考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系內(nèi),已知?jiǎng)狱c(diǎn)A,B分別在x,y軸上,|AB|=3,點(diǎn)M滿足
BM
=
2
3
BA
,M點(diǎn)的軌跡記作C.
(Ⅰ)求C的方程;
(Ⅱ)若直線AB與軌跡C只有一個(gè)公共點(diǎn),求該公共點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-2|+|2x-1|
(1)解不等式f(x)>2;
(2)若?x∈R,不等式f(x)<
1
2
m2+m成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+
1+x2
),
(Ⅰ)判斷并證明函數(shù)y=f(x)的奇偶性;
(Ⅱ)判斷并證明函數(shù)y=f(x)在R上的單調(diào)性;
(Ⅲ)當(dāng)x∈[1,2]時(shí),不等式f(a•4x)+f(2x+1)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=alnx+bx2+x的極值點(diǎn)是x=1和x=2.
(1)求a,b的值;
(2)求f(x)在[1,3]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+ax2+bx(a,b∈R).
(1)若曲線C:y=f(x)經(jīng)過點(diǎn)P(1,2),曲線C在點(diǎn)P處的切線與直線x+2y-14=0垂直,求a,b的值;
(2)若f(x)在區(qū)間(1,2)內(nèi)存在兩個(gè)不同的極值點(diǎn),求證:0<a+b<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx在點(diǎn)x0處取得極大值5,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過點(diǎn)(1,0),(2,0),如圖所示.求:
(1)x0的值;
(2)a,b,c的值.
(3)若曲線y=f(x)(0≤x≤2)與y=m有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+a
x2+1
是奇函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)判斷f(x)在(1,+∞)上的單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一塊邊長為10cm的正方形鐵片按如圖所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形加工成一個(gè)正四棱錐形容器,則容器的容積V表示為x的函數(shù)為V(x)=
 

查看答案和解析>>

同步練習(xí)冊答案