【題目】求以圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦為直徑的圓C的方程.
【答案】x2+y2-4x+4y-17=0
【解析】試題分析:解法一:先兩圓方程相減,得到公共弦方程,再聯(lián)立直線和圓的方程求出公共點坐標(biāo),進而求出圓的半徑和圓心,寫出圓的方程即可;解法二:先兩圓方程相減,得到公共弦方程,再利用圓系方程進行求解.
試題解析:解法一:聯(lián)立兩圓方程,
相減得公共弦所在直線方程為4x+3y-2=0.
再由,
聯(lián)立得兩圓交點坐標(biāo)(-1,2)、(5,-6).
∵所求圓以公共弦為直徑,
∴圓心C是公共弦的中點(2,-2),半徑為,
∴圓C的方程為(x-2)2+(y+2)2=25.
解法二:由解法一可知公共弦所在直線方程為4x+3y-2=0.設(shè)所求圓的方程為x2+y2-12x-2y-13+λ(x2+y2+12x+16y-25)=0(λ為參數(shù)).
可求得圓心.
∵圓心C在公共弦所在直線上,
∴,
解得λ=.
∴圓C的方程為x2+y2-4x+4y-17=0.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點與點的距離比它的直線的距離小2.
(1)求點的軌跡方程;
(2)是點軌跡上互相垂直的兩條弦,問:直線是否經(jīng)過軸上一定點,若經(jīng)過,求出該點坐標(biāo);若不經(jīng)過,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面與平面交于直線是平面內(nèi)不同的兩點,是平面內(nèi)不同的兩點,且不在直線上,分別是線段的中點,下列命題中正確的個數(shù)為( )
①若與相交,且直線平行于時,則直線與也平行;
②若是異面直線時,則直線可能與平行;
③若是異面直線時,則不存在異于的直線同時與直線都相交;
④兩點可能重合,但此時直線與不可能相交
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點為A,右焦點為F,過點F的直線交橢圓于B,C兩點.
(1)求該橢圓的離心率;
(2)設(shè)直線AB和AC分別與直線x=4交于點M,N,問:x軸上是否存在定點P使得MP⊥NP?若存在,求出點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C1:x2+y2-4x-2y-5=0與圓C2:x2+y2-6x-y-9=0.
(1)求證:兩圓相交;(2)求兩圓公共弦所在的直線方程;
(3)在平面上找一點P,過P點引兩圓的切線并使它們的長都等于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面PAD 平面ABCD,PA PD ,PA=PD,AB AD,AB=1,AD=2,AC=CD= ,
(1)求證:PD 平面PAB;
(2)求直線PB與平面PCD所成角的正弦值;
(3)在棱PA上是否存在點M,使得BMll平面PCD?若存在,求 的值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列中,a1=2,a3+2是a2和a4的等差中項.
(1)求數(shù)列的通項公式;
(2)記=log2,求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標(biāo)原點.
(1)求E的方程;
(2)設(shè)過點A的動直線l與E相交于P,Q兩點.當(dāng)△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列幾個命題
①方程有一個正實根,一個負(fù)實根,則;
②函數(shù)是偶函數(shù),但不是奇函數(shù);
③命題“若,則”的否命題為“若,則”;
④命題“,使得”的否定是“,都有”;
⑤“”是“”的充分不必要條件.
正確的是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com