【題目】判斷下列函數(shù)的奇偶性.
(1)f(x)=x2-|x|+1,x∈[-1,4];
(2)f(x)= ;
(3)f(x)= ;
(4)f(x)=
【答案】
(1)解:雖然f(-x)=f(x),但定義域不關(guān)于原點(diǎn)對(duì)稱(chēng),
故f(x)=x2-|x|+1,x∈[-1,4]是非奇非偶函數(shù)
(2)解:由 得-1≤x<0,或0<x≤1.
故函數(shù)f(x)的定義域?yàn)閇-1,0)∪(0,1],關(guān)于原點(diǎn)對(duì)稱(chēng),
且有x+2>0.從而有f(x)= = = ,
于是f(-x)=- =-f(x).故函數(shù)f(x)為奇函數(shù)
(3)解:∵ ≥0,∴-1≤x<1.
∴定義域不關(guān)于原點(diǎn)對(duì)稱(chēng).∴f(x)為非奇非偶函數(shù)
(4)解:當(dāng)x>0時(shí),x<0 ,f(-x)=(-x)2+(-x)=x2-x;
當(dāng)x<0時(shí),x>0,f(-x)=-(-x)2+(-x)=-x2-x.
∴f(-x)=-f(x),∴f(x)是奇函數(shù)
【解析】函數(shù)奇偶性的判斷,先觀察定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng),再由定義進(jìn)行判斷.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子里裝有7張卡片,其中有紅色卡片4張,編號(hào)分別為1,2,3,4;白色卡片3張,編號(hào)分別為2,3,4.從盒子中任取4張卡片(假設(shè)取到任何一張卡片的可能性相同). (Ⅰ)求取出的4張卡片中,含有編號(hào)為3的卡片的概率.
(Ⅱ)在取出的4張卡片中,紅色卡片編號(hào)的最大值設(shè)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:實(shí)數(shù)x滿(mǎn)足(x﹣a)(x﹣3a)<0,其中a>0,命題q:實(shí)數(shù)x滿(mǎn)足 2<x≤3.
(1)若a=1,有p且q為真,求實(shí)數(shù)x的取值范圍.
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a為常數(shù)) (Ⅰ)當(dāng)a=4時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范圍;
(Ⅲ)若方程f(x)+a+1=0在x∈(1,2)上有且只有一個(gè)實(shí)根,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式 的解集為( )
A.(﹣1,0)∪(1,+∞)
B.(﹣∞,﹣1)∪(0,1)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若不等式[2tx2﹣(t2﹣1)x+2]lnx≤0對(duì)任意x∈(0,+∞)恒成立,則實(shí)數(shù)t的值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地方政府欲將一塊如圖所示的直角梯形ABCD空地改建為健身娛樂(lè)廣場(chǎng),已知AD∥BC,AD⊥AB,AD=2BC=2 百米,AB=3百米,廣場(chǎng)入口P在AB上,且AP=2BP,根據(jù)規(guī)劃,過(guò)點(diǎn)P鋪設(shè)兩條互相垂直的筆直小路PM、PN(小路寬度不計(jì)),點(diǎn)M、N分別在邊AD、BC上(包含端點(diǎn)),△PAM區(qū)域擬建為跳舞健身廣場(chǎng),△PBN區(qū)域擬建為兒童樂(lè)園,其他區(qū)域鋪設(shè)綠化草坪,設(shè)∠APM=θ.
(1)求綠化草坪面積的最大值;
(2)現(xiàn)擬將兩條小路PN、PN進(jìn)行不同風(fēng)格的美化,小路PM的美化費(fèi)用為每百米1萬(wàn)元,小路PN的美化費(fèi)用為每百米2萬(wàn)元,試確定點(diǎn)M,N的位置,使得小路PM,PN的總美化費(fèi)用最低,并求出最低費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知g(x)是各項(xiàng)系數(shù)均為整數(shù)的多項(xiàng)式,f(x)=2x2﹣x+1,且滿(mǎn)足f(g(x))=2x4+4x3+13x2+11x+16,則g(x)的各項(xiàng)系數(shù)之和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.“p∨q”是“p∧q”的充分不必要條件
B.樣本10,6,8,5,6的標(biāo)準(zhǔn)差是3.3
C.K2是用來(lái)判斷兩個(gè)分類(lèi)變量是否相關(guān)的隨機(jī)變量,當(dāng)K2的值很小時(shí)可以推定兩類(lèi)變量不相關(guān)
D.設(shè)有一個(gè)回歸直線(xiàn)方程為 =2﹣1.5x,則變量x每增加一個(gè)單位, 平均減少1.5個(gè)單位.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com