【題目】一個盒子里裝有7張卡片,其中有紅色卡片4張,編號分別為1,2,3,4;白色卡片3張,編號分別為2,3,4.從盒子中任取4張卡片(假設取到任何一張卡片的可能性相同). (Ⅰ)求取出的4張卡片中,含有編號為3的卡片的概率.
(Ⅱ)在取出的4張卡片中,紅色卡片編號的最大值設為X,求隨機變量X的分布列和數學期望.
【答案】解:(I)設取出的4張卡片中,含有編號為3的卡片為事件A,則
P(A)= =
所以,取出的4張卡片中,含有編號為3的卡片的概率為
(II)隨機變量X的所有可能取值為1,2,3,4
P(X=1)=
P(X=2)=
P(X=3)= =
P(X=4)= =
X的分布列為
EX= =
x | 1 | 2 | 3 | 4 |
P |
【解析】(I)從7張卡片中取出4張的所有可能結果數有 ,然后求出取出的4張卡片中,含有編號為3的卡片的結果數,代入古典概率的求解公式即可求解(II)先判斷隨機變量X的所有可能取值為1,2,3,4,根據題意求出隨機變量的各個取值的概率,即可求解分布列及期望值
【考點精析】利用離散型隨機變量及其分布列對題目進行判斷即可得到答案,需要熟知在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數學 來源: 題型:
【題目】為了弘揚民族文化,某校舉行了“我愛國學,傳誦經典”考試,并從中隨機抽取了100名考生的成績(得分均為整數,滿分100分)進行統(tǒng)計制表,其中成績不低于80分的考生被評為優(yōu)秀生,請根據頻率分布表中所提供的數據,用頻率估計概率,回答下列問題.
分組 | 頻數 | 頻率 |
[50,60) | 5 | 0.05 |
[60,70) | a | 0.20 |
[70,80) | 35 | b |
[80,90) | 25 | 0.25 |
[90,100) | 15 | 0.15 |
合計 | 100 | 1.00 |
(I)求a,b的值及隨機抽取一考生恰為優(yōu)秀生的概率;
(Ⅱ)按頻率分布表中的成績分組,采用分層抽樣抽取20人參加學校的“我愛國學”宣傳活動,求其中優(yōu)秀生的人數;
(Ⅲ)在第(Ⅱ)問抽取的優(yōu)秀生中指派2名學生擔任負責人,求至少一人的成績在[90,100]的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,F(xiàn)1、F2分別是雙曲線 ﹣ =1(a>0,b>0)的兩個焦點,以坐標原點O為圓心,|OF1|為半徑的圓與該雙曲線左支交于A、B兩點,若△F2AB是等邊三角形,則雙曲線的離心率為( )
A.
B.2
C. ﹣1
D.1+
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠的A、B、C三個不同車間生產同一產品的數量(單位:件)如下表所示.質檢人員用分層抽樣的方法從這些產品中共抽取6件樣品進行檢測.
車間 | A | B | C |
數量 | 50 | 150 | 100 |
(1)求這6件樣品中來自A、B、C各車間產品的數量;
(2)若在這6件樣品中隨機抽取2件進行進一步檢測,求這2件商品來自相同車間的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四名同學根據各自的樣本數據研究變量x,y之間的相關關系,并求得回歸直線方程,分別得到以下四個結論:
①y與x負相關且 =2.347x-6.423;②y與x負相關且 =-3.476x+5.648;
③y與x正相關且 =5.437x+8.493;④y與x正相關且 =-4.326x-4.578.
其中一定不正確的結論的序號是( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=lnx﹣ax+ ﹣1. (Ⅰ)當a=1時,求曲線f(x)在x=1處的切線方程;
(Ⅱ)當a= 時,求函數f(x)的單調區(qū)間;
(Ⅲ)在(Ⅱ)的條件下,設函數g(x)=x2﹣2bx﹣ ,若對于x1∈[1,2],x2∈[0,1],使f(x1)≥g(x2)成立,求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高一年級500名學生中,血型為O的有200人,血型為A的有125人,血型為B的有125人,血型為AB型的有50人.為了研究血型與色弱的關系,要從中抽取一個容量為40的樣本,應如何抽樣?寫出血型為AB型的抽樣過程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時的耗油量y(升)關于行駛速度x(千米/小時)的函數解析式可以表示為:y= x3﹣ x+8(0<x≤120)已知甲、乙兩地相距100千米. (Ⅰ)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(Ⅱ)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com