已知定義在R上的奇函數(shù)滿足,且在區(qū)間[3,5]上是單調(diào)遞增,則函數(shù)在區(qū)間[1,3]上的最值是(   )
A.最大值是,最小值是B.最大值是,最小值是
C.最大值是,最小值是D.最大值是,最小值是
A
解:因為根據(jù)函數(shù)f(x)滿足f(1+x)=f(1-x),可得函數(shù)f(x)的圖象關于直線x=1對稱,又由f(x)在區(qū)間[3,5]上單調(diào)遞增,可得函數(shù)f(x)在區(qū)間[1,3]上單調(diào)遞減,從而求得函數(shù)f(x)在區(qū)間[1,3]上的最值.∴函數(shù)f(x)在區(qū)間[1,3]上最大值是f(1),最小值是f(3),
故選A
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)若,求的取值范圍;
(Ⅱ)若是以2為周期的偶函數(shù),且當時,有.
求當時,函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(本小題滿分12分)
已知函數(shù)為奇函數(shù),滿足,且不等式 的解集 是
(1)求的值;
(2)對一切,不等式都成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知試確定的單調(diào)區(qū)間和單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

給出定義:若m<xm (其中m為整數(shù)),則m叫做離實數(shù)x最近的
整數(shù),記作{x}=m.在此基礎上給出下列關于函數(shù)f(x)=|x-{x}|的四個命題:
①數(shù)yf(x)的定義域為R,值域為[0,];
②函數(shù)yf(x)的圖象關于直線x (k∈Z)對稱;
③函數(shù)yf(x)是周期函數(shù),最小正周期為1;
④函數(shù)yf(x)在[-]上是增函數(shù).
其中正確的命題的序號是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果二次函數(shù)有兩個不同的零點,則的值是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)是偶函數(shù),當時,,且當時,的值域是,則的值是      (    )
A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)在區(qū)間上為減函數(shù),則a的取值范圍是
A.(0,1)B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,,,  則,的大小關系是
A.B.C.D.

查看答案和解析>>

同步練習冊答案