13.已知(1+2x)8=a0+a1(1-x)+a2(1-x)2+…a8(1-x)8,則a7=-3072(用數(shù)字作答).

分析 將:∵(1+2x)8=28[-$\frac{3}{2}$+(1-x)-$\frac{3}{2}$]8,利用二項(xiàng)展開(kāi)式的通項(xiàng)公式求出通項(xiàng),令1-x的指數(shù)為7,求出a7

解答 解:∵(1+2x)8=28(-x-$\frac{1}{2}$)8=28[(1-x)-$\frac{3}{2}$]8,
∴其展開(kāi)式的通項(xiàng)為T(mén)r+1=28(-1)r($\frac{3}{2}$)8-rC8r(1-x)r
令r=7得a7=28(-1)7($\frac{3}{2}$)8-7C87=-3072,
故答案為:-3072

點(diǎn)評(píng) 本題考查利用二次展開(kāi)式的通項(xiàng)公式解決二項(xiàng)展開(kāi)式的特定項(xiàng)問(wèn)題.關(guān)鍵是將底數(shù)改寫(xiě)成右邊的底數(shù)形式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如圖,已知|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=2,|$\overrightarrow{OC}$|=6,∠AOB=120°,$\overrightarrow{OA}$•$\overrightarrow{OC}$=0,設(shè)$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$(λ、μ∈R),則λ+3μ=8$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x(x2-a)+$\frac{1}{x}$.
(1)證明:對(duì)任意a∈R,都有導(dǎo)函數(shù)f′(x)是偶函數(shù);
(2)若g(x)=f(x)-$\frac{1}{x}$-$\frac{1}{9}$lnx,且a<0,討論函數(shù)g(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若函數(shù)y=logax的圖象過(guò)點(diǎn)($\frac{1}{4}$,-2),則底a=(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若x1滿足2010x+2010x=2,x2滿足2010x+2010log2010(x-1)=2,則x1+x2=( 。
A.1B.$\frac{2011}{2010}$C.$\frac{1006}{1005}$D.$\frac{2013}{2010}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在△ABC中,C=60°,a+b=16,則△ABC的周長(zhǎng)l的最小值是( 。
A.22B.23C.24D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.下列四個(gè)命題:
(1)“?x∈R,x2-x+1≤0”的否定;
(2)“若x2+x-6≥0,則x>2”的否命題;
(3)在△ABC中,“A>30°”是“sinA>$\frac{1}{2}$”的充分不必要條件;
(4)“k=2”是“函數(shù)f(x)=2x-(k2-3)•2-x為奇函數(shù)”的充要條件.
其中真命題的序號(hào)是(1),(2)(真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.觀察下面幾個(gè)算式,找出規(guī)律:
1+2+1=4;   
1+2+3+2+1=9;   
1+2+3+4+3+2+1=16;
1+2+3+4+5+4+3+2+1=25;

利用上面的規(guī)律,請(qǐng)你算出1+2+3+…+99+100+99+…+3+2+1=10000.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列四個(gè)說(shuō)法:其中正確說(shuō)法的個(gè)數(shù)是( 。﹤(gè)
①方程x2+2x-7=0的兩根之和為-2,兩根之積為-7;
②方程x2-2x+7=0的兩根之和為-2,兩根之積為7;
③方程3x2-7=0的兩根之和為0,兩根之積為$-\frac{7}{3}$;
④方程3x2+2x=0的兩根之和為-2,兩根之積為0.
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案