15.已知一個(gè)錐體挖去一個(gè)柱體后的三視圖如圖所示,網(wǎng)格上小正方形的邊長為1,則該幾何體的體積等于( 。
A.11πB.C.$\frac{11}{3}$πD.

分析 由三視圖可知:該幾何題是一個(gè)圓錐挖去一個(gè)圓柱以后剩下的幾何體.利用體積計(jì)算公式即可得出.

解答 解:由三視圖可知:該幾何題是一個(gè)圓錐挖去一個(gè)圓柱以后剩下的幾何體.
∴該幾何體的體積=$\frac{1}{3}×π×{2}^{2}$×3-π×12×1=3π,
故選:D.

點(diǎn)評(píng) 本題考查了三視圖的有關(guān)計(jì)算,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,SA⊥平面ABC,SA=3$\sqrt{2}$,AB=1,$AC=\sqrt{2}$,∠BAC=45°,則球O的表面積為20π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=cos2x-sinxcosx
(1)求f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)求f(x)在區(qū)間$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}sin(α+\frac{π}{4})}\\{y=sin2α+1}\\{\;}\end{array}\right.$(α為參數(shù)),以O(shè)為原極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2=4ρsinθ-3
(Ⅰ)求曲線C1與曲線C2在平面直角坐標(biāo)系中的普通方程;
(Ⅱ)求曲線C1上的點(diǎn)與曲線C2上的點(diǎn)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.甲、乙兩所學(xué)校高三年級(jí)分別有600人,500人,為了解兩所學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)五校聯(lián)考的數(shù)學(xué)成績情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績,并作出了頻數(shù)分布統(tǒng)計(jì)表如下:
甲校:
 分組[70,80)[80,90)[90,100)[100,110)
 頻數(shù) 3 4 7 14
 分組[110,120)[120,130)[130,140)[140,150]
 頻數(shù) 17 4
乙校:
 分組[70,80)[80,90)[90,100)[100,110)
 頻數(shù) 1 2 8 9
 分組[110,120)[120,130)[130,140)[140,150]
 頻數(shù) 1010  y
(1)計(jì)算x,y的值;
(2)若規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為兩所學(xué)校的數(shù)學(xué)成績有差異;
(3)若規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀,現(xiàn)從已抽取的110人中抽取兩人,要求每校抽1人,所抽的兩人中有人優(yōu)秀的條件下,求乙校被抽到的同學(xué)不是優(yōu)秀的概率.
 甲校 乙校 總計(jì) 
 優(yōu)秀   
 非優(yōu)秀   
 總計(jì)   
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(d+b)}$,其中n=a+b+c+d.
臨界值表:
 P(K2≥k0 0.100.05 0.010
 k0 2.706 3.8416.635 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一個(gè)體積為8$\sqrt{3}$的正三棱柱的三視圖如圖所示,則該三棱柱的俯視圖的面積為( 。
A.4$\sqrt{3}$B.4C.6$\sqrt{3}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.${∫}_{0}^{\frac{π}{2}}$cosxdx等于(  )
A.1B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{3^{x+1}}\\{log_2}x\end{array}$$\begin{array}{l},x≤1\\;x>1.\end{array}$,若f(x0)>3,則x0的取值范圍是( 。
A.x0>8B.0<x0≤1或x0>8C.0<x0<8D.-1<x0<0或0<x0<8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y-1≤0}\\{x-a≥0}\end{array}\right.$,若|$\frac{y}{x-2}$|=$\frac{1}{2}$恒成立,則實(shí)數(shù)a的取值范圍是[0,1].

查看答案和解析>>

同步練習(xí)冊答案