分析 由三棱錐S-ABC的所有頂點都在球O的球面上,AB=1,$AC=\sqrt{2}$,∠BAC=45°,知BC,∠ABC=90°,可得△ABC截球O所得的圓O′的半徑,利用SA⊥平面ABC,SA=3$\sqrt{2}$,此能求出球O的半徑,從而能求出球O的表面積.
解答 解:如圖,三棱錐S-ABC的所有頂點都在球O的球面上,
∵AB=1,$AC=\sqrt{2}$,∠BAC=45°
∴BC=$\sqrt{1+2-2×1×\sqrt{2}×\frac{\sqrt{2}}{2}}$=1,
∴∠ABC=90°.
∴△ABC截球O所得的圓O′的半徑r=$\frac{1}{2}•\frac{1}{sin45°}$=$\frac{\sqrt{2}}{2}$,
設OO′=d,球O的半徑R,則
∵SA⊥平面ABC,SA=3$\sqrt{2}$,
∴R2=$\frac{1}{2}$+d2=$\frac{1}{2}$+(3$\sqrt{2}$-d)2,
∴球O的半徑R=$\sqrt{5}$,
∴球O的表面積S=4πR2=20π.
故答案為:20π.
點評 本題考查球的表面積的求法,合理地作出圖形,數(shù)形結合求出球半徑,是解題的關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x | B. | y=|x-3| | C. | y=2x | D. | y=log${\;}_{\frac{1}{2}}$x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{5}{4}$ | D. | $\frac{{\sqrt{7}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | π | C. | $\frac{π}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
API | [0,50] | (50,100] | (100,150] | (150,200] | (200,300] | >300 |
空氣質量 | 優(yōu) | 良 | 輕度污染 | 輕度污染 | 中度污染 | 重度污染 |
天數(shù) | 6 | 14 | 18 | 27 | 20 | 15 |
非重度污染 | 嚴重污染 | 合計 | |
供暖季 | 22 | 8 | 30 |
非供暖季 | 63 | 7 | 70 |
合計 | 85 | 15 | 100 |
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 11π | B. | 5π | C. | $\frac{11}{3}$π | D. | 3π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com