3.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}sin(α+\frac{π}{4})}\\{y=sin2α+1}\\{\;}\end{array}\right.$(α為參數(shù)),以O(shè)為原極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2=4ρsinθ-3
(Ⅰ)求曲線C1與曲線C2在平面直角坐標(biāo)系中的普通方程;
(Ⅱ)求曲線C1上的點(diǎn)與曲線C2上的點(diǎn)的距離的最小值.

分析 (I)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}sin(α+\frac{π}{4})}\\{y=sin2α+1}\\{\;}\end{array}\right.$(α為參數(shù)),由x=$\sqrt{2}sin(α+\frac{π}{4})$=sinα+cosα,兩邊平方代入即可得出曲線C1的普通方程.曲線C2的極坐標(biāo)方程為ρ2=4ρsinθ-3,把ρ2=x2+y2,y=ρsinθ代入可得曲線C2的普通方程.
(II)x2+y2-4y+3=0配方為:x2+(y-2)2=1,圓心C2(0,2),設(shè)P(x0,y0)為曲線C1上的任意一點(diǎn),則y0=${x}_{0}^{2}$,可得|PC|2=${x}_{0}^{2}$+$({y}_{0}-2)^{2}$=$({x}_{0}^{2}-\frac{3}{2})^{2}$+$\frac{7}{4}$,利用二次函數(shù)的單調(diào)性即可得出.

解答 解:(I)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}sin(α+\frac{π}{4})}\\{y=sin2α+1}\\{\;}\end{array}\right.$(α為參數(shù)),
由x=$\sqrt{2}sin(α+\frac{π}{4})$=$\sqrt{2}×\frac{\sqrt{2}}{2}(sinα+cosα)$=sinα+cosα,兩邊平方可得:x2=1+sin2α=y,
∴曲線C1的普通方程為y=x2
曲線C2的極坐標(biāo)方程為ρ2=4ρsinθ-3,把ρ2=x2+y2,y=ρsinθ代入可得:x2+y2=4y-3,
∴曲線C2的普通方程為:x2+y2-4y+3=0.
(II)x2+y2-4y+3=0配方為:x2+(y-2)2=1,圓心C2(0,2),
設(shè)P(x0,y0)為曲線C1上的任意一點(diǎn),則y0=${x}_{0}^{2}$,
則|PC|2=${x}_{0}^{2}$+$({y}_{0}-2)^{2}$=${x}_{0}^{2}$+$({x}_{0}^{2}-2)^{2}$=${x}_{0}^{4}$-3${x}_{0}^{2}$+4=$({x}_{0}^{2}-\frac{3}{2})^{2}$+$\frac{7}{4}$,
當(dāng)${x}_{0}^{2}$=$\frac{3}{2}$時(shí),|PC|min=$\frac{\sqrt{7}}{2}$.∴曲線C1上的點(diǎn)與曲線C2上的點(diǎn)的距離的最小值為$\frac{\sqrt{7}}{2}$-1.

點(diǎn)評 本題考查了極坐標(biāo)化為直角坐標(biāo)方程的方法、曲線相交問題、兩點(diǎn)之間的距離公式、二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若一系列函數(shù)的解析式和值域相同,但其定義域不同,則稱這些函數(shù)為“同族函數(shù)”,例如函數(shù)y=x2,x∈[1,2]與函數(shù)y=x2,x∈[-2,-1]即為“同族函數(shù)”.下面函數(shù)的解析式也能夠被用來構(gòu)造“同族函數(shù)”的是( 。
A.y=xB.y=|x-3|C.y=2xD.y=log${\;}_{\frac{1}{2}}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某城市隨機(jī)抽取一年內(nèi)100 天的空氣質(zhì)量指數(shù)(AQI)的監(jiān)測數(shù)據(jù),結(jié)果統(tǒng)計(jì)如表:
API[0,50](50,100](100,150](150,200](200,300]>300
空氣質(zhì)量優(yōu)輕度污染輕度污染中度污染重度污染
天數(shù)61418272015
(Ⅰ)若本次抽取的樣本數(shù)據(jù)有30 天是在供暖季,其中有8 天為嚴(yán)重污染.根據(jù)提
供的統(tǒng)計(jì)數(shù)據(jù),完成下面的2×2 列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該城市本年的
空氣嚴(yán)重污染與供暖有關(guān)”?
非重度污染嚴(yán)重污染合計(jì)
供暖季22830
非供暖季63770
合計(jì)8515100
(Ⅱ)已知某企業(yè)每天的經(jīng)濟(jì)損失y(單位:元)與空氣質(zhì)量指數(shù)x 的關(guān)系式為y=$\left\{\begin{array}{l}{0,0≤x≤100}\\{400,100<x≤300}\\{2000,x>300}\end{array}\right.$試估計(jì)該企業(yè)一個(gè)月(按30 天計(jì)算)的經(jīng)濟(jì)損失的數(shù)學(xué)期望.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.方程sin(2x-$\frac{π}{4}$)=|lgx|根的個(gè)數(shù)等于6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.?dāng)?shù)列{an}滿足a1=$\frac{1}{4}$,an+1=$\frac{1}{4-4{a}_{n}}$,若不等式$\frac{{a}_{2}}{{a}_{1}}$+$\frac{{a}_{3}}{{a}_{2}}$+…+$\frac{{a}_{n+2}}{{a}_{n+1}}$<n+λ對任何正整數(shù)n恒成立,則實(shí)數(shù)λ的最小值為( 。
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{7}{8}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.一個(gè)棱長為$\root{3}{6}$的正方體被一個(gè)平面截去一部分后,剩余部分的三視圖如圖所示,則此剩余部分的體積為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知一個(gè)錐體挖去一個(gè)柱體后的三視圖如圖所示,網(wǎng)格上小正方形的邊長為1,則該幾何體的體積等于( 。
A.11πB.C.$\frac{11}{3}$πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲(chǔ)蓄yi(單位:千元)的數(shù)據(jù)資料,算得$\sum_{i=1}^{10}{x}_{i}$=80,$\sum_{i=1}^{10}$yi=20,$\sum_{i=1}^{10}$xiyi=184,$\sum_{i=1}^{10}$${{x}_{i}}^{2}$=720.家庭的月儲(chǔ)蓄y對月收入x的線性回歸方程為y=bx+a,若該居民區(qū)某家庭的月儲(chǔ)蓄為2千元,預(yù)測該家庭的月收入為8千元.
(附:線性回歸方程y=bx+a中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.由以下這組數(shù)據(jù)得線性回歸方程一定過點(diǎn)(  )
x-4-3-2-11234
  y3.62.51.9-0.3-1.4-2-2.3-2
A.(-2,1.9)B.(0,0)C.(2,-2)D.(-3,-3)

查看答案和解析>>

同步練習(xí)冊答案