11.某公司為了了解用電量y(單位:度)與氣溫x(單位:℃)之間的關(guān)系,隨機統(tǒng)計了某4天的用電量與當(dāng)天氣溫,數(shù)據(jù)如表:
氣溫x141286
用電量y22263438
(1)用電量y與氣溫x具有線性相關(guān)關(guān)系,y關(guān)于x的線性回歸方程為y=-2x+b,求b的值;
(2)利用線性回歸方程估計氣溫為10℃時的用電量.

分析 (1)根據(jù)所給的表格做出本組數(shù)據(jù)的樣本中心點,根據(jù)樣本中心點在線性回歸直線上,利用待定系數(shù)法做出b的值;
(2)根據(jù)所給的x的值,代入線性回歸方程,預(yù)報要銷售的件數(shù).

解答 解:(1)由表格得$\overline{x}$=(14+12+8+6)÷4=10,$\overline{y}$=(22+26+34+38)÷4=30
即樣本中心點的坐標(biāo)為:(10,40),
又∵樣本中心點(10,40)在回歸方程y=-2x+b上,
∴30=10×(-2)+b,
解得:b=50,
(2)由(1)y=-2x+50,
當(dāng)x=10時,y=-2×10+50=30.

點評 本題考查線性回歸方程,兩個變量之間的關(guān)系,除了函數(shù)關(guān)系,還存在相關(guān)關(guān)系,通過建立回歸直線方程,就可以根據(jù)其部分觀測值,獲得對這兩個變量之間整體關(guān)系的了解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.f(x)是一次函數(shù),且$\int_0^1{f(x)dx}$=5,$\int_0^1{xf(x)dx}=\frac{17}{6}$,那么f(x)的解析式是f(x)=4x+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)0<a<1,已知函數(shù)f(x)=$\left\{\begin{array}{l}cosπx,0<x≤a\\ 8{x^3},a<x≤1\end{array}$,若存在實數(shù)b使函數(shù)g(x)=f(x)-b有兩個零點,則a的取值范圍是( 。
A.$({0,\frac{1}{4}})$B.$({0,\frac{1}{2}})$C.(0,1)D.$({\frac{1}{2},1})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知O是銳角△ABC的外接圓圓心,A=$\frac{π}{6}$,D是BC邊上一點(D與B,C不重合),且|${\overrightarrow{AB}}$|2=|${\overrightarrow{AD}}$|2+$\overrightarrow{BD}$•$\overrightarrow{DC}$,若2m$\overrightarrow{BO}$=$\frac{cosA}{sinC}\overrightarrow{BA}$+$\frac{cosC}{sinA}\overrightarrow{BC}$,則m=$\frac{\sqrt{6}+\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.720B.960C.1200D.1440

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.(2x-$\frac{1}{\sqrt{x}}$)n二項展開式系數(shù)和為64,則展開式中的x3項的系數(shù)為240(結(jié)果用數(shù)字表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)整數(shù)m是從不等式x2-2x-8≤0的整數(shù)解的集合S中隨機抽取的一個元素,記隨機變量ξ=m2,則ξ的數(shù)學(xué)期望E(ξ)=(  )
A.1B.5C.$\frac{14}{7}$D.$\frac{16}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.
(1)當(dāng)E為AB的中點時,求AD1與平面ECD1所成角的正弦值;
(2)當(dāng)AE等于何值時,二面角D1-EC-D的大小為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\frac{ax-1}{x+2}$-e-(x+2)恰有兩個零點,則實數(shù)a的取值范圍是( 。
A.a≥-$\frac{1}{2}$B.a>0C.-$\frac{1}{2}$<a<0D.-$\frac{1}{2}$<a≤0

查看答案和解析>>

同步練習(xí)冊答案