16.為了調(diào)查某廠工人生產(chǎn)某種產(chǎn)品的能力,隨機(jī)抽查了20位工人某天生產(chǎn)該產(chǎn)品的數(shù)量.產(chǎn)品數(shù)量的分組區(qū)間為[45,55),[55,65),[65,75),[75,85),[85,95)由此得到頻率分布直方圖如圖.則產(chǎn)品數(shù)量位于[55,65)范圍內(nèi)的頻率為0.4;這20名工人中一天生產(chǎn)該產(chǎn)品數(shù)量在[55,75)的人數(shù)是13.

分析 根據(jù)直方圖分析可知該產(chǎn)品數(shù)量在[55,65)的頻率,又由頻率與頻數(shù)的關(guān)系計(jì)算可得結(jié)論.

解答 解:由直方圖可知:生產(chǎn)該產(chǎn)品數(shù)量在[55,65)的頻率=1-(0.005+0.0100+0.020+0.025)×10=0.4
∴生產(chǎn)該產(chǎn)品數(shù)量在[55,75)的人數(shù)=20×(0.04+0.025)×10=13,
故答案為:0.4   13

點(diǎn)評 本題是對頻率、頻數(shù)簡單運(yùn)用的考查,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若cos($\frac{π}{4}$-α)=$\frac{1}{3}$,則sin2α=-$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知實(shí)數(shù)p>0,直線4x+3y-2p=0與拋物線y2=2px和圓(x-$\frac{p}{2}$)2+y2=$\frac{{p}^{2}}{4}$從上到下的交點(diǎn)依次為A,B,C,D,則$\frac{|AC|}{|BD|}$的值為(  )
A.$\frac{1}{8}$B.$\frac{5}{16}$C.$\frac{3}{8}$D.$\frac{7}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知復(fù)數(shù)Z滿足|Z|=$\sqrt{2}$,Z2的虛部是2.設(shè)Z,Z2,Z-Z2在復(fù)平面上的對應(yīng)點(diǎn)分別為A,B,C,則△ABC的面積為4或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若z1=a+2i,z2=3-4i,且$\frac{z_1}{z_2}$為虛數(shù),則a的范圍是a≠$-\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,且橢圓C1的中心和拋物線C2的頂點(diǎn)均為原點(diǎn)O,從橢圓C1上取兩個點(diǎn).拋物線C2上取一個點(diǎn).將其坐標(biāo)記錄于表中:
 x 3-2 $\sqrt{2}$
 y-2$\sqrt{3}$ 0 $\frac{\sqrt{6}}{2}$
(Ⅰ)求橢圓C1和拋物線C2的標(biāo)準(zhǔn)方程:
(Ⅱ)直線l:y=kx+m(k≠0)與橢圓C1交于不同的兩點(diǎn)M、N.
(i)若線段MN的垂直平分線過點(diǎn)G($\frac{1}{8}$,0),求實(shí)數(shù)k的取值范圍.
(ii)在滿足(i)的條件下,且有m≠=1,求△OMN的面積S△OMN

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)f0(x)=sinx-cosx,f1(x)=f′0(x),f2(x)=f′1(x),…,fn+1(x)=f′n(x),n∈N,則${f_{2013}}(\frac{π}{3})$=$\frac{{1+\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知拋物線C:y2=2px(x>0)的焦點(diǎn)為F,P為C上一點(diǎn),若|PF|=4,點(diǎn)P到y(tǒng)軸的距離等于3,則點(diǎn)F的坐標(biāo)為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知O,N,P在△ABC所在平面內(nèi),且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,$\overrightarrow{NA}$+$\overrightarrow{NB}$+$\overrightarrow{NC}$=$\overrightarrow{0}$,$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{PB}$•$\overrightarrow{PC}$=$\overrightarrow{PC}$•$\overrightarrow{PA}$,則點(diǎn)O,N,P依次是△ABC的( 。
A.重心,外心,垂心B.重心,外心,內(nèi)心C.外心,重心,垂心D.外心,重心,內(nèi)心

查看答案和解析>>

同步練習(xí)冊答案