6.若cos($\frac{π}{4}$-α)=$\frac{1}{3}$,則sin2α=-$\frac{7}{9}$.

分析 由條件利用誘導(dǎo)公式、二倍角的余弦公式,求得sin2α的值.

解答 解:cos($\frac{π}{4}$-α)=$\frac{1}{3}$,
則sin2α=cos($\frac{π}{2}$-2α)=2${cos}^{2}(\frac{π}{4}-α)$-1=2•$\frac{1}{9}$-1=-$\frac{7}{9}$,
故答案為:-$\frac{7}{9}$.

點(diǎn)評 本題主要考查誘導(dǎo)公式、二倍角的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.三段論推理“①矩形是平行四邊形;②正方形是矩形;③正方形是平行四邊形”中的小前提是②.(填寫序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}+{y}^{2}$=1(a>1),過點(diǎn)B($\frac{4}{5}$,-$\frac{1}{5}$)作斜率為1的直線l交橢圓E于C、D兩點(diǎn),點(diǎn)B恰為線段CD的中點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)動點(diǎn)Q在橢圓E上,點(diǎn)R(-1,0),若直線QR的斜率大于1,求直線OQ的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩頂點(diǎn)為A1,A2,虛軸兩端點(diǎn)為B1,B2,兩焦點(diǎn)為F1,F(xiàn)2.若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2,則雙曲線的離心率為( 。
A.$\frac{1+\sqrt{5}}{2}$B.$\frac{3+\sqrt{5}}{2}$C.$\frac{1+\sqrt{2}}{2}$D.$\frac{3+\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列命題中:
①若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow$=$\overrightarrow{0}$;
②若|$\overrightarrow{a}$|=|$\overrightarrow$|,($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)=0;
③若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,則$\overrightarrow$=$\overrightarrow{c}$;
④若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$;
其中正確的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的左焦點(diǎn)為F1,右焦點(diǎn)F2,直線l1過點(diǎn)F1且垂直于橢圓的長軸,動直線l2垂直l1于點(diǎn)P,線段PF2垂直平分線交l2于點(diǎn)M.
(1)求點(diǎn)M的軌跡E的方程;
(2)若點(diǎn)A的坐標(biāo)為(2,4),直線l:x=ky+2(k∈R),與曲線E相交于B,C兩點(diǎn),直線AB,AC分別交直線l1于點(diǎn)S、T,試判斷以線段ST為直徑的圓是否恒過兩個定點(diǎn)?若是,求這兩個定點(diǎn)的坐標(biāo);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.從某小學(xué)隨機(jī)抽取100名學(xué)生,將他們的身高(單位:厘米)數(shù)據(jù)繪成頻率分布直方圖(如圖).
(Ⅰ)由圖中數(shù)據(jù)求a的值;
(Ⅱ)若要從身高在[120,130),[130,140),[140,150]三組內(nèi)的學(xué)生中,用分層抽樣的方法選取12人參加一項(xiàng)活動,則從身高在[140,150]內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若將函數(shù)y=3sin(6x+$\frac{π}{6}$)的圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),再向右平移$\frac{π}{6}$個單位長度,得到函數(shù)y=f(x)的圖象,若y=f(x)+a在x∈[-$\frac{π}{6}$,$\frac{π}{2}$]上有兩個不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.[-3,$\frac{3}{2}$]B.[-$\frac{3}{2}$,$\frac{3}{2}$]C.[$\frac{3}{2}$,3]D.(-3,-$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.為了調(diào)查某廠工人生產(chǎn)某種產(chǎn)品的能力,隨機(jī)抽查了20位工人某天生產(chǎn)該產(chǎn)品的數(shù)量.產(chǎn)品數(shù)量的分組區(qū)間為[45,55),[55,65),[65,75),[75,85),[85,95)由此得到頻率分布直方圖如圖.則產(chǎn)品數(shù)量位于[55,65)范圍內(nèi)的頻率為0.4;這20名工人中一天生產(chǎn)該產(chǎn)品數(shù)量在[55,75)的人數(shù)是13.

查看答案和解析>>

同步練習(xí)冊答案