在△ABC中,A為最小角,B為最大角,已知sin(2A+C)=
4
5
,sinB=
4
5
,求cos2(B+C)
考點:二倍角的余弦
專題:三角函數(shù)的求值
分析:由題意可得2A+C=B,進而可得2π-2B=B+C,可得cos(B+C)=cos(2π-2B)=cos2B=1-2sin2B,代值計算可得cos(B+C),平方可得答案.
解答: 解:∵在△ABC中,A為最小角,B為最大角,且sin(2A+C)=
4
5
,sinB=
4
5
,
∴2A+C=B,或2A+C+B=π,顯然2A+C+B=π可推得A=0矛盾,
∴2A+C=B,∴2A+2C=B+C,∴2(A+C)=B+C,
∴2(π-B)=2π-2B=B+C,
∴cos(B+C)=cos(2π-2B)=cos2B=1-2sin2B=-
7
25

∴cos2(B+C)=
49
625
點評:本題考查二倍角公式,涉及三角形的內(nèi)角和定理,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓E長軸的一個端點是拋物線y2=12x的焦點,且橢圓焦點與拋物線焦點的距離是1.
(1)求橢圓E的標準方程;
(2)若A、B是橢圓E的左右端點,O為原點,P是橢圓E上異于A、B的任意一點,直線AP、BP分別交y軸于M、N,問
OM
0N
是否為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列定積分:
(1)
1
-1
x
5-4x
dx  
(2)
1
0
ex
e2x+1
dx  
(3)
e
1
2+lnx
x
dx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

9865+828535-9865+828535+9865+….這樣以此類推到加減100次的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2,x∈(-∞,0)
2cosx,x∈(0,π)
,若f[f(x0)]=0,則x0=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)下列條件求函數(shù)f(x)=sin(x+
π
4
)+2sin(x-
π
4
)-4cos2x+3cos(x+
4
)的值.
(1)x=
π
4
;
(2)x=
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面向量
a
=(
3
,2cosx),
b
=(sin2x,cosx),f(x)=
a
b
,x∈[0,
π
2
].
(1)求f(x)的最小值;
(2)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解不等式組:
|
1
a
|≤1
|
2
a
|>2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y2=8x的焦點為F,準線為l,P是l上一點,Q是直線PF與C的一個交點,若
PF
=4
FQ
,則|QF|=( 。
A、
7
2
B、5
C、
5
2
D、2

查看答案和解析>>

同步練習冊答案