計(jì)算下列定積分:
(1)
1
-1
x
5-4x
dx  
(2)
1
0
ex
e2x+1
dx  
(3)
e
1
2+lnx
x
dx.
考點(diǎn):定積分
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:將被積函數(shù)變形,利用換元的思想轉(zhuǎn)化為我們熟悉的基本初等函數(shù)形式解答.
解答: 解;(1)設(shè)
5-4x
=t
,則x=
5-t2
4
,并且t∈[1,3],
所以
1
-1
x
5-4x
dx=
3
1
(
5
4t
-
t
4
)d(
5-t2
4
)
=
1
8
3
1
(t2-5)dt
=
1
8
1
3
t3-5t
)|
 
3
1
=-
1
6
;
(2)設(shè)ex=t,則x=lnt,
1
0
ex
e2x+1
dx=
e
1
1
1+t2
dt
=arctant|
 
e
1
=arctane-
π
4
;
(3)
e
1
2+lnx
x
dx=
e
1
(2+lnx)d(2+lnx)
=
1
2
×
(2+lnx)2|
 
e
1
=
5
2
點(diǎn)評(píng):本題考查了定積分的計(jì)算,關(guān)鍵是將所求轉(zhuǎn)化為熟知的基本初等函數(shù)的導(dǎo)數(shù),進(jìn)一步求定積分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校為了解高一年段期中考試數(shù)學(xué)科的情況,從高一的所有數(shù)學(xué)試卷中隨機(jī)抽取n份試卷進(jìn)行分析,得到數(shù)學(xué)成績(jī)頻率分布直方圖如下圖,其中成績(jī)?cè)赱70,80)的人數(shù)為15,規(guī)定:成績(jī)≥80分為優(yōu)秀.
(Ⅰ)求樣本中成績(jī)優(yōu)秀的試卷份數(shù),并估計(jì)該校高一年段期中考試數(shù)學(xué)成績(jī)的優(yōu)秀率;
(Ⅱ)從樣本成績(jī)?cè)赱50,60)和[60,70)這兩組中共隨機(jī)抽取2名同學(xué),求抽取的2名同學(xué)中不及格(成績(jī)<60分)的人數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn)的橢圓C的左焦點(diǎn)F(-
3
,0),右頂點(diǎn)A(2,0).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)斜率為
1
2
的直線l與橢圓C交于A、B兩點(diǎn),求弦長(zhǎng)|AB|的最大值及此時(shí)l的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知常數(shù)a滿足a>0且a≠1,則函數(shù)f(x)=loga(-x),g(x)=ax-a,則他們的圖象可能是下列選項(xiàng)(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A(x1,y1)、B(4,
9
5
)、C(x2,y2)是右焦點(diǎn)為F的橢圓
x2
25
+
y2
9
=1上三個(gè)不同的點(diǎn),若|AF|、|BF|、|CF|成等差數(shù)列,則x1+x2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程x+b=3-
4x-x2
有解,則實(shí)數(shù)b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義域?yàn)镽的函數(shù)f(x)=
2-|x-1|+1,x≠1
a,x≠1
,若關(guān)于x的方程2f2(x)-(2a+3)f(x)+3a=0有五個(gè)不同的實(shí)數(shù)解,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A為最小角,B為最大角,已知sin(2A+C)=
4
5
,sinB=
4
5
,求cos2(B+C)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知扇形的周長(zhǎng)為8cm,圓心角α為2rad,求:
(1)該扇形的面積;
(2)圓心角所對(duì)弦長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案