【題目】已知定圓:,動圓過點,且和圓相切.
(Ⅰ)求動圓圓心的軌跡的方程;
(Ⅱ)若直線:與軌跡交于,兩點,線段的垂直平分線經(jīng)過點,求實數(shù)的取值范圍.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)圓的半徑,設動圓的半徑為由,從而圓內切于圓,根據(jù),利用橢圓的定義可得,,從而求出橢圓的方程.
(Ⅱ)將直線與橢圓聯(lián)立消去得到, ,即,設,,利用韋達定理求出弦中點的坐標,線段的垂直平分線方程是,將點代入整理可得,代入即可求解.
(Ⅰ)圓的圓心為,半徑.
設動圓的半徑為,依題意有.
由,可知點在圓內,從而圓內切于圓,故,
即.
所以動點的軌跡是以、為焦點,長軸長為的橢圓.
因為,,所以.
于是的方程是.
(Ⅱ)設,,聯(lián)立消去得到,
,即.
則,,
弦中點的坐標是.
由,得.
另一個方面,線段的垂直平分線方程是.
點在此直線上,
得到,整理得.
代入中,,.
又,,所以,.
故實數(shù)的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】2019年,河南省鄭州市的房價依舊是鄭州市民關心的話題.總體來說,二手房房價有所下降,相比二手房而言,新房市場依然強勁,價格持續(xù)升高.已知銷售人員主要靠售房提成領取工資.現(xiàn)統(tǒng)計鄭州市某新房銷售人員一年的工資情況的結果如圖所示,若近幾年來該銷售人員每年的工資總體情況基本穩(wěn)定,則下列說法正確的是( )
A.月工資增長率最高的為8月份
B.該銷售人員一年有6個月的工資超過4000元
C.由此圖可以估計,該銷售人員2020年6,7,8月的平均工資將會超過5000元
D.該銷售人員這一年中的最低月工資為1900元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標準,其合格產(chǎn)品的質量與尺寸之間近似滿足關系式(b,c為大于0的常數(shù)).按照某項指標測定,當產(chǎn)品質量與尺寸的比在區(qū)間內時為優(yōu)等品.現(xiàn)隨機抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:
尺寸x(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
質量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
質量與尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(1)現(xiàn)從抽取的6件合格產(chǎn)品中再任選2件,求選中的2件均為優(yōu)等品的概率;
(2)根據(jù)測得數(shù)據(jù)作了初步處理,得相關統(tǒng)計量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
根據(jù)所給統(tǒng)計量,求y關于x的回歸方程.
附:對于樣本,其回歸直線的斜率和截距的最小二乘估計公式分別為:,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為,,以,,和為頂點的梯形的高為,面積為.
(1)求橢圓的標準方程;
(2)設,為橢圓上的任意兩點,若直線與圓相切,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知極坐標系的極點為直角坐標系xOy的原點,極軸為x軸的正半軸,兩種坐標系中的長度單位相同,圓C的直角坐標方程為,直線l的參數(shù)方程為(t為參數(shù)),射線OM的極坐標方程為.
(1)求圓C和直線l的極坐標方程;
(2)已知射線OM與圓C的交點為O,P,與直線l的交點為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:離心率是分別是橢圓的左右焦點,過作斜率為的直線,交橢圓于,兩點,且三角形周長
(1)求橢圓的標準方程;
(2)若直線分別交軸于不同的兩點,.如果為銳角,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,短軸長為.
(1)求橢圓的標準方程;
(2)若橢圓的左焦點為,過點的直線與橢圓交于兩點,則在軸上是否存在一個定點使得直線的斜率互為相反數(shù)?若存在,求出定點的坐標;若不存在,也請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在矩形中,,沿直線BD將△ABD折成,使得點在平面上的射影在內(不含邊界),設二面角的大小為,直線 ,與平面中所成的角分別為,則( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com