分析 (I)由2Sn=n,可得Sn=log2n,當(dāng)n=1時(shí),a1=S1.當(dāng)n≥2時(shí),an=Sn-Sn-1.
(II)2${\;}^{{S}_{n}+n}$=${2}^{{S}_{n}}•{2}^{n}$=n•2n.利用“錯(cuò)位相減法”、等比數(shù)列的前n項(xiàng)和公式可得數(shù)列{2${\;}^{{S}_{n}+n}$}的前n項(xiàng)和Tn.
解答 解:(I)∵2Sn=n,
∴Sn=log2n,
當(dāng)n=1時(shí),a1=S1=0.
當(dāng)n≥2時(shí),an=Sn-Sn-1=log2n-log2(n-1)=$lo{g}_{2}\frac{n}{n-1}$,
∴an=$\left\{\begin{array}{l}{0,n=1}\\{lo{g}_{2}\frac{n}{n-1},n≥2}\end{array}\right.$.
(II)2${\;}^{{S}_{n}+n}$=${2}^{{S}_{n}}•{2}^{n}$=n•2n.
∴數(shù)列{2${\;}^{{S}_{n}+n}$}的前n項(xiàng)和Tn=2+2•22+3×23+…+n•2n,
2Tn=22+2×23+…+(n-1)•2n+n•2n+1,
∴-Tn=2+22+23+…+2n-n2n+1=$\frac{2({2}^{n}-1)}{2-1}$-n•2n+1=(1-n)•2n+1-2,
∴Tn=(n-1)•2n+1+2.
點(diǎn)評(píng) 本題考查了“錯(cuò)位相減法”、等比數(shù)列的前n項(xiàng)和公式、指數(shù)與對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 3 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (a+b)>16$\sqrt{2}$ | B. | bc(b+c)>8 | C. | 6≤abc≤12 | D. | 12≤abc≤24 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com