19.設(shè)△ABC的內(nèi)角A,B,C所對的邊長分別為a,b,c,且sin2A+sin2B+sin2C=$\frac{1}{2}$,面積S∈[1,2],則下列不等式一定成立的是( 。
A.(a+b)>16$\sqrt{2}$B.bc(b+c)>8C.6≤abc≤12D.12≤abc≤24

分析 利用和差化積可得:sin2A+sin2B+sin2C=4sinCsinAsinB,可得sinCsinAsinB=$\frac{1}{8}$,設(shè)外接圓的半徑為R,利用正弦定理可得及S=$\frac{1}{2}absinC$,可得sinAsinBsinC=$\frac{S}{2{R}^{2}}$=$\frac{1}{8}$,即R2=4S,由于面積S滿足1≤S≤2,可得2≤R≤$2\sqrt{2}$,即可判斷出.

解答 解:∵sin2A+sin2B+sin2C=2sin(A+B)cos(A-B)+2sinCcosC=2sinC[cos(A-B)-cos(A+B)]=4sinCsinAsinB,
∴4sinCsinAsinB=$\frac{1}{2}$,即sinCsinAsinB=$\frac{1}{8}$,
設(shè)外接圓的半徑為R,
由正弦定理可得:$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$=2R,
由S=$\frac{1}{2}absinC$,
可得sinAsinBsinC=$\frac{S}{2{R}^{2}}$=$\frac{1}{8}$,
即R2=4S,
∵面積S滿足1≤S≤2,
∴4≤R2≤8,即2≤R≤$2\sqrt{2}$,
由sinAsinBsinC=$\frac{1}{8}$可得8≤abc$≤16\sqrt{2}$,顯然選項C,D不一定正確,
A.a(chǎn)b(a+b)>abc≥8,即ab(a+b)>8,但ab(a+b)>16$\sqrt{2}$,不一定正確,
B.bc(b+c)>abc≥8,即bc(b+c)>8,正確,
故選:B.

點評 本題考查了三角函數(shù)和差化積、三角形的面積計算公式、正弦定理、三角形三邊大小關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的前n項和為Sn,2Sn=n
(Ⅰ)求數(shù)列{an}的通項公式.
(Ⅱ)求數(shù)列{2${\;}^{{S}_{n}+n}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知等比數(shù)列{an}的各項均為正數(shù),且公比q≠1,若a4、a5、2a3成等差數(shù)列,則公比q=( 。
A.$\frac{1+\sqrt{3}}{2}$或$\frac{1-\sqrt{3}}{2}$B.$\frac{1+\sqrt{17}}{4}$C.$\frac{1+\sqrt{5}}{2}$或$\frac{1-\sqrt{5}}{2}$D.$\frac{1+\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3,PB=2,PC=1.設(shè)M是底面ABC內(nèi)一點,定義f(M)=(m,n,p),其中m、n、P分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=($\frac{1}{2}$,x,y),且$\frac{1}{x}$+$\frac{a}{y}$≥18恒成立,則正實數(shù)a的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=x-2,g(x)=x3+tanx,那么( 。
A.f(x)•g(x)是奇函數(shù)B.f(x)•g(x)是偶函數(shù)C.f(x)+g(x)是奇函數(shù)D.f(x)+g(x)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),?x∈R,有f(-x)+f(x)=x2,在(0,+∞)上f′(x)<x,若f(4-m)-f(m)≥8-4m.則實數(shù)m的取值范圍為( 。
A.[-2,2]B.[2,+∞)C.[0,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在半徑為10cm的球面上有A,B,C三點,如果AB=8$\sqrt{3}$,∠ACB=60°,則球心O到平面ABC的距離為( 。
A.2cmB.4cmC.6cmD.8cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知a、b是實數(shù),a≠0,函數(shù)f(x)=ax2+$\frac{x}$(x>0).
(1)試就a、b的取值,討論f(x)的零點個數(shù);
(2)若函數(shù)g(x)=f(x)-f(2)在區(qū)間(0,2)內(nèi)有零點,求$\frac{a}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)等差數(shù)列{an}的公差為d(d∈N*),等比數(shù)列{bn}的公比為q,若a2,a3,a5分別為{bn}的前三項,且d<q.
(1)求數(shù)列{an},{bn}的通項公式;
(2)若數(shù)列{cn}滿足:b1c1+b2c2+…+bncn=an,求數(shù)列{cnan}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案