18.已知A={x|x2-2mx+m2-1<0},B={x|$\frac{1}{2}$<x<$\frac{2}{3}$},若B?A,求實(shí)數(shù)m的取值范圍.

分析 由題意,令f(x)=x2-2mx+m2-1,利用B={x|$\frac{1}{2}$<x<$\frac{2}{3}$},B?A,可得$\left\{\begin{array}{l}{f(\frac{1}{2})≤0}\\{f(\frac{2}{3})≤0}\end{array}\right.$,解不等式組,即可求實(shí)數(shù)m的取值范圍.

解答 解:由題意,令f(x)=x2-2mx+m2-1,則
∵B={x|$\frac{1}{2}$<x<$\frac{2}{3}$},B?A,
∴$\left\{\begin{array}{l}{f(\frac{1}{2})≤0}\\{f(\frac{2}{3})≤0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{{m}^{2}-m-\frac{3}{4}≤0}\\{{m}^{2}-\frac{4}{3}m-\frac{5}{9}≤0}\end{array}\right.$,
∴-$\frac{1}{2}$≤m≤$\frac{3}{2}$.

點(diǎn)評 本題考查集合的包含關(guān)系,考查函數(shù)思想的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知f(x)=$\left\{\begin{array}{l}{1-{x}^{2}(x≤1)}\\{{x}^{2}-2x-2(x>1)}\end{array}\right.$,則f[$\frac{1}{f(2)}$]=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如表數(shù)據(jù):
單價(jià)x(元)34567
銷量y(件)7872696863
由表中數(shù)據(jù),求得線性回歸直線方程為$\hat y$=-6x+$\hat a$.若在這些樣本點(diǎn)中任取一點(diǎn),則它在回歸直線左下方的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.定義:若兩個(gè)二次曲線的離心率相等,則稱這兩個(gè)二次曲線相似.如圖,橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,右頂點(diǎn)為A,以其短軸的兩個(gè)端點(diǎn)B1,B2及其一個(gè)焦點(diǎn)為頂點(diǎn)的三角形是邊長為6的正三角形,M是C上異于B1,B2的一個(gè)動(dòng)點(diǎn),△MB1B2的重心為G,G點(diǎn)的軌跡記為C1
(Ⅰ)(i)求C的方程;
(ii)求證:C1與C相似;
(Ⅱ)過B1點(diǎn)任作一直線,自下至上依次與C1、x軸的正半軸、C交于不同的四個(gè)點(diǎn)P,Q,R,S,求$\frac{|{B}_{1}S{|}^{2}-|PR{|}^{2}}{|AQ|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}滿足a1=-1,an=1-$\frac{1}{{a}_{n-1}}$(n>1),a2016=( 。
A.2B.1C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{AC},\overrightarrow{AD}$和$\overrightarrow{AB}$在正方形網(wǎng)格中的位置如圖所示,若$\overrightarrow{AC}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,則λ-μ=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{5}{2}$D.$-\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,角A,B,C的對邊分別為a,b,c,若B=60°,且a,b,c成等比數(shù)列,則A=60度,C=60度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2a•sinωxcosωx+2$\sqrt{3}$cos2ωx-$\sqrt{3}$+1(a>0,ω>0)的最大值為3,最小正周期為π.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
(Ⅱ)若f(θ)=$\frac{7}{3}$,求sin(4θ+$\frac{π}{6}$)的值.
(Ⅲ)若存在區(qū)間[a,b](a,b∈R,且a<b)使得y=f(x)在[a,b]上至少含有6個(gè)零點(diǎn),在滿足上述條件的[a,b]中,求b-a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)=$\frac{4x}{{{x^2}+1}}$在區(qū)間[m,m+1]上是單調(diào)遞增函數(shù),則實(shí)數(shù)m的取值范圍是[-1,0].

查看答案和解析>>

同步練習(xí)冊答案