分析 (Ⅰ)運(yùn)用正弦定理化角為邊,再由余弦定理可得角B;
(Ⅱ)由三角形面積公式可得ab=4,由余弦定理,基本不等式即可得解b的值.
解答 (本題滿分為12分)
解:(Ⅰ)由正弦定理可得,sin2A+sin2C-sinAsinC=sin2B即為a2+c2-ac=b2,
由余弦定理可得cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{ac}{2ac}$=$\frac{1}{2}$,
由0<B<π,
則B=$\frac{π}{3}$;
(Ⅱ)由已知S=$\frac{1}{2}$acsinB=$\frac{\sqrt{3}}{4}$ac=$\sqrt{3}$,所以ac=4,…(8分)
可得:a+c≥2$\sqrt{ac}$=4,即a+c的最小值為4,當(dāng)且僅當(dāng)a=c=2時(shí)等號(hào)成立,
此時(shí),由余弦定理b2=a2+c2-2accosB=22+22-2×$2×2×\frac{1}{2}$=4,…(10分)
∴b=2.…(12分)
點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理及基本不等式在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (-∞,0) | C. | [1,+∞) | D. | [0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 外離 | B. | 外切 | C. | 相交 | D. | 內(nèi)切 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0<x<2} | B. | {x|0<x<1} | C. | {x|0≤x<1} | D. | {x|-1<x<0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com