19.已知點(diǎn)P是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0,xy≠0)上的動點(diǎn),F(xiàn)1(-c,0)、F2(c,0)為橢圓對左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),若M是∠F1PF2的角平分線上的一點(diǎn),且F1M⊥MP,則|OM|的取值范圍是(0,c).

分析 如圖所示.M是∠F1PF2的角平分線上的一點(diǎn),且F1M⊥MP,可得點(diǎn)M是底邊F1N的中點(diǎn).又點(diǎn)O是線段F1F2的中點(diǎn),|OM|=$\frac{1}{2}{|F}_{2}N|$.|PF1|=|PN|,可得∠F2NM>∠F2F1N,可得|F1F2|>|F2N|,即可得出.

解答 解:如圖所示.
∵M(jìn)是∠F1PF2的角平分線上的一點(diǎn),且F1M⊥MP,
∴點(diǎn)M是底邊F1N的中點(diǎn),
又點(diǎn)O是線段F1F2的中點(diǎn),
∴|OM|=$\frac{1}{2}{|F}_{2}N|$,
∵|PF1|=|PN|,
∴∠F2NM>∠F2F1N,
∴|F1F2|>|F2N|,
∴0<|OM|$<\frac{1}{2}×2c$=c.
∴則|OM|的取值范圍是(0,c).
故答案為:(0,c).

點(diǎn)評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、等腰三角形的性質(zhì)、三角形的中位線定理、三角形的邊角關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.?dāng)?shù)列{an}的通項公式是an=$\frac{1}{\sqrt{n}-\sqrt{n+1}}$(n∈N+),若前n項的和為10,則項數(shù)n為( 。
A.11B.99C.120D.121

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=(2m-1)x${\;}^{{m}^{2}-2}$是冪函數(shù),則 f(-2)=( 。
A.-1B.-2C.1D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,(-1≤x≤1)}\\{x-1,(x≥1)}\end{array}\right.$.
(1)求f(f(0))的值;
(2)在給出坐標(biāo)系中畫出函數(shù)f(x)的大致圖象(只畫圖象不寫過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知一個幾何體的三視圖如圖所示,正視圖、俯視圖為直角三角形,側(cè)視圖是直角梯形,則它的體積等于$\frac{40}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)=3x+4,若|f(x)-1|<a的必要條件是|x+1|<b(a,b>0),則a,b之間的關(guān)系是( 。
A.$a>\frac{3}$B.$b<\frac{a}{3}$C.$a≤\frac{3}$D.$b≥\frac{a}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$\overrightarrow a=(5,6),\overrightarrow b=(sinα,cosα)$,且$\overrightarrow a∥\overrightarrow b$,則tanα=(  )
A.$-\frac{5}{6}$B.$-\frac{6}{5}$C.$\frac{6}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0).若橢圓上存在點(diǎn)P,使$\frac{{P{F_1}}}{{2P{F_2}}}=\frac{a}{c}$;則該橢圓離心率的范圍是$[\frac{{-3+\sqrt{17}}}{2},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列各式因式分解正確的是( 。
A.$\frac{1}{2}$a2+a+$\frac{1}{2}$=a2+2a+1=(a+1)2B.a2+ab-6b2=a(a+b)-6b2
C.a2-b2-a-b=(a+b)(a-b)-a-bD.a-2a2+a3=a(1-2a+a2)=a(1-a)2

查看答案和解析>>

同步練習(xí)冊答案