【題目】已知函數(shù).

當(dāng)時(shí),恒成立,求的值;

恒成立,求的最小值.

【答案】(1);(2).

【解析】

(1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,求出函數(shù)的最大值,從而求出a的值即可;

(2)把fx)≤0恒成立,轉(zhuǎn)化為lnxax+b恒成立,當(dāng)a≤0時(shí)顯然不滿足題意;當(dāng)a>0時(shí),要使lnxax+b對(duì)任意x>0恒成立,需要直線yax+b與曲線ylnx相切,設(shè)出切點(diǎn)坐標(biāo),把a,b用切點(diǎn)橫坐標(biāo)表示,得到a+blnx0﹣1(x0>0),構(gòu)造函數(shù)gxlnx﹣1,利用導(dǎo)數(shù)求其最小值得答案.

解:(1)由,得,則.

.

,則上遞增.

,∴.當(dāng)時(shí),不符合題意.

② 若,則當(dāng)時(shí),遞增;當(dāng)時(shí),,遞減.

∴當(dāng)時(shí),.

欲使恒成立,則需

,則.

∴當(dāng)時(shí),,遞減;當(dāng)時(shí),,遞增.

∴當(dāng)時(shí),

綜上所述,滿足題意的.

(2)由(1)知,欲使恒成立,則.

恒成立恒成立函數(shù)的圖象不在函數(shù)圖象的上方,

又需使得的值最小,則需使直線與曲線的圖象相切.

設(shè)切點(diǎn)為,則切線方程為,即..

.

,則.

∴當(dāng)時(shí),遞減;當(dāng)時(shí),,遞增.

.

的最小值為0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中有一分鹿問(wèn)題:今有大夫、不更、簪裊、上造、公士,凡五人,共獵得五鹿.欲以爵次分之,問(wèn)各得幾何.在這個(gè)問(wèn)題中,大夫、不更、簪裊、上造、公士是古代五個(gè)不同爵次的官員,現(xiàn)皇帝將大夫、不更、簪梟、上造、公士這5人分成3組派去三地執(zhí)行公務(wù)(每地至少去1人),則不同的方案有( )種.

A.150B.180C.240D.300

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近期,某學(xué)校舉行了一次體育知識(shí)競(jìng)賽,并對(duì)競(jìng)賽成績(jī)進(jìn)行分組:成績(jī)不低于80分的學(xué)生為甲組,成績(jī)低于80分的學(xué)生為乙組.為了分析競(jìng)賽成績(jī)與性別是否有關(guān),現(xiàn)隨機(jī)抽取了60名學(xué)生的成績(jī)進(jìn)行分析,數(shù)據(jù)如下圖所示的列聯(lián)表.

甲組

乙組

合計(jì)

男生

3

女生

13

合計(jì)

40

60

1)將列聯(lián)表補(bǔ)充完整,判斷是否有的把握認(rèn)為學(xué)生按成績(jī)分組與性別有關(guān)?

2)如果用分層抽樣的方法從甲組和乙組中抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求至少有1人在甲組的概率.

附:,.

參考數(shù)據(jù)及公式:

0.100

0.050

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著我國(guó)經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng).某地區(qū)2014年至2018年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:

年份

2014

2015

2016

2017

2018

年份代號(hào)

1

2

3

4

5

人均純收入

5

6

7

8

10

1)求關(guān)于的線性回歸方程;

2)利用(1)中的回歸方程,分析2014年至2018年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)2020年該地區(qū)農(nóng)村居民家庭人均純收入約為多少千元?

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知為圓的直徑,點(diǎn)為線段上一點(diǎn),且,點(diǎn)為圓上一點(diǎn),且.點(diǎn)在圓所在平面上的正投影為點(diǎn),

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著移動(dòng)互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機(jī)應(yīng)用軟件層出不窮.現(xiàn)從使用AB兩款訂餐軟件的商家中分別隨機(jī)抽取50個(gè)商家,對(duì)它們的平均送達(dá)時(shí)間進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如下:

1)試估計(jì)使用A款訂餐軟件的50個(gè)商家的平均送達(dá)時(shí)間的眾數(shù)及平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

2)根據(jù)以上抽樣調(diào)查數(shù)據(jù),將頻率視為概率,回答下列問(wèn)題:

①能否認(rèn)為使用B款訂餐軟件平均送達(dá)時(shí)間不超過(guò)40分的商家達(dá)到75%?

②如果你要從AB兩款訂餐軟件中選擇一款訂餐,你會(huì)選擇哪款?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

11分制乒乓球比賽,每贏一球得1分,當(dāng)某局打成10:10平后,每球交換發(fā)球權(quán),先多得2分的一方獲勝,該局比賽結(jié)束.甲、乙兩位同學(xué)進(jìn)行單打比賽,假設(shè)甲發(fā)球時(shí)甲得分的概率為0.5,乙發(fā)球時(shí)甲得分的概率為0.4,各球的結(jié)果相互獨(dú)立.在某局雙方10:10平后,甲先發(fā)球,兩人又打了X個(gè)球該局比賽結(jié)束.

1)求PX=2);

2)求事件X=4且甲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心為原點(diǎn),長(zhǎng)軸在軸上,左頂點(diǎn)為,上、下焦點(diǎn)分別為,線段的中點(diǎn)分別為,且是斜邊長(zhǎng)為的直角三角形.

(1)若點(diǎn)在橢圓上,且為銳角,求的取值范圍;

(2)過(guò)點(diǎn)作直線交橢圓于點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?/span>13秒與18秒之間,將測(cè)試結(jié)果按如下方式分成五組:第一組,第二組,,第五組.下圖是按上述分組方法得到的頻率分布直方圖.按上述分組方法得到的頻率分布直方圖.

1)若成績(jī)大于或等于14秒且小于16秒認(rèn)為良好,求該班在這次百米測(cè)試中成績(jī)良好的人數(shù);

2)設(shè)m,n表示該班某兩位同學(xué)的百米測(cè)試成績(jī),且已知求事件發(fā)生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案