1.命題“?x∈Z,使x2+2x+m≤0”的否定是(  )
A.?x∈Z,都有x2+2x+m≤0B.?x∈Z,使x2+2x+m>0
C.?x∈Z,都有x2+2x+m>0D.不存在x∈Z,使x2+2x+m>0

分析 將“存在”換為“?”同時(shí)將結(jié)論“x2+2x+m≤0”換為“x2+2x+m>0”.

解答 解:命題“?x∈Z,使x2+2x+m≤0”的否定是:
?x∈Z,都有x2+2x+m>0,
故選:C.

點(diǎn)評(píng) 求含量詞的命題的否定,應(yīng)該將量詞交換同時(shí)將結(jié)論否定.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知集合M={x|-3≤x≤4},S={x||x-a|≤1},且M?S,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在三棱柱ABC-A1B1C1中,點(diǎn)C在平面A1B1C1內(nèi)的射影為A1B1的中點(diǎn)O,AC=BC=AA1,∠ACB=90°
(1)求證:AB⊥CC1;
(2)若CO=$\frac{\sqrt{2}}{2}$,求點(diǎn)C到平面ABO的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}的首項(xiàng)為a1=1,且${a_{n+1}}=\frac{{{a_n}+4}}{{{a_n}+1}}$,(n∈N*).
(Ⅰ)求a2,a3的值,并證明:a2n-1<a2n+1<2;
(Ⅱ)令bn=|a2n-1-2|,Sn=b1+b2+…+bn.證明:$\frac{9}{8}[{1-{{({\frac{1}{9}})}^n}}]≤{S_n}<\frac{7}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.“a≥2”是“函數(shù)f(x)=x2+ax+1有零點(diǎn)”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某公司從代理的A,B,C,D四種產(chǎn)品中,按分層抽樣的方法抽取容量為110的樣本,已知A,B,C,D四種產(chǎn)品的數(shù)量比是2:3:2,:4,則該樣本中D類產(chǎn)品的數(shù)量為(  )
A.22B.33C.44D.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某校高一舉行了一次數(shù)學(xué)競(jìng)賽,為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(1)求樣本容量n和頻率分布直方圖中的x,y的值;
(2)估計(jì)本次競(jìng)賽學(xué)生成績(jī)的中位數(shù)和平均分;
(3)在選取的樣本中,從競(jìng)賽成績(jī)?cè)?0分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生,求所抽取的2名學(xué)生中至少有一人得分在[90,100]內(nèi)的頻率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=2x2+ax-2b,若a,b都是區(qū)間[0,4]內(nèi)的數(shù),則使f(1)<0的概率是(  )
A.$\frac{1}{4}$B.$\frac{3}{8}$C.$\frac{1}{2}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知實(shí)數(shù)x,y滿足x>y>0且x+y=1,則$\frac{4}{x+3y}$+$\frac{1}{x-y}$的最小值是$\frac{9}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案