5.2016年1月1日起全國統(tǒng)一實(shí)施全面二孩政策,為了解適齡民眾對放開生育二孩政策的態(tài)度,某市選取70后和80后作為調(diào)查對象,隨機(jī)調(diào)查了100位,得到數(shù)據(jù)如表:
  生二胎 不生二胎 合計
 70后 30 1545 
 80后 45 1055
 合計 75 25100
(1)根據(jù)調(diào)查數(shù)據(jù),是否有95%以上的把握認(rèn)為“生二胎與年齡有關(guān)”,并說明理由;
(2)以這100個人的樣本數(shù)據(jù)估計該市的總體數(shù)據(jù),且以頻率估計概率,若從該市70后公民中隨機(jī)抽取3位,記其中生二胎的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望和方差.
參考數(shù)據(jù):
P(K2>k) 0.15 0.10 0.05 0.25 0.010 0.005
 k 2.072 2.706 3.841 5.024 6.6357.879
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

分析 (1)根據(jù)列聯(lián)表中的數(shù)據(jù),計算K2的值,即可得到結(jié)論;
(2)X可能取值為0,1,2,3,X~B(3,$\frac{2}{3}$),求出相應(yīng)的概率,可得X的分布列及數(shù)學(xué)期望和方差.

解答 解:(1)由題意,K2=$\frac{100×(30×10-45×15)^{2}}{75×25×45×55}$≈3.030<3.841,
所以沒有95%以上的把握認(rèn)為“生二胎與年齡有關(guān)”;
(2)由已知得該市70后“生二胎”的概率為$\frac{30}{45}$=$\frac{2}{3}$,且X~B(3,$\frac{2}{3}$),
P(X=0)=C30($\frac{1}{3}$)3=$\frac{1}{27}$,
P(X=1)=C31($\frac{2}{3}$)($\frac{1}{3}$)2=$\frac{2}{9}$,
P(X=2)=C32($\frac{2}{3}$)2($\frac{1}{3}$)=$\frac{4}{9}$,
P(X=3)=C32($\frac{2}{3}$)3=$\frac{8}{27}$,
其分布列如下:

X0123
P$\frac{1}{27}$$\frac{2}{9}$$\frac{4}{9}$$\frac{8}{27}$
∴E(X)=3×$\frac{2}{3}$=2,D(X)=3×$\frac{2}{3}$×$\frac{1}{3}$=$\frac{2}{3}$.

點(diǎn)評 本題考查獨(dú)立性檢驗(yàn),考查離散型隨機(jī)變量的分布列與期望,考查學(xué)生的閱讀與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在如圖所示的空間幾何體中,平面ACD⊥平面ABC,△ACD與△ACB是邊長為2的等邊三角形,BE=2,BE和平面ABC所成的角為60°,且點(diǎn)E在平面ABC上的射影落在∠ABC的平分線上.
(1)求證:DE∥平面ABC;
(2)求二面角E-BC-A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)g(x)=alnx+$\frac{1}{2}$x2+(1-b)x.
(Ⅰ)若g(x)在點(diǎn)(1,g(1))處的切線方程為8x-2y-3=0,求a,b的值;
(Ⅱ)若b=a+1,x1,x2是函數(shù)g(x)的兩個極值點(diǎn),求證:g(x1)+g(x2)+4<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一個幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
      
A.B.C.3π+4D.2π+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$\frac{{(10+2\sqrt{2})π}}{2}+1$B.$\frac{13π}{6}$C.$\frac{{(11+\sqrt{2})π}}{2}+1$D.$\frac{{(11+2\sqrt{2})π}}{2}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,點(diǎn)E、F、G分別為棱AB、BC、PD的中點(diǎn),平面AEG與線段PC、PF、PB分別交于點(diǎn)H、I、J,且PA=AD=2.
(1)證明:AE∥GH;
(2)求直線EF與平面AEG所成角的大小,并求線段PI的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.把正整數(shù)排成如圖(a)的三角形陣,然后擦去第偶數(shù)行中的所有奇數(shù),第奇數(shù)行中的所有偶數(shù),可得如圖(b)三角形陣,現(xiàn)將圖(b)中的正整數(shù)按從小到大的順序構(gòu)成一個數(shù)列{an},若ak=2017,則k=1031.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一個圓柱挖去一部分后,剩余部分的三視圖如圖所示,則剩余部分的表面積等于(  )
A.39πB.48πC.57πD.63π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=$\frac{{x}^{2}-2x+2}{{x}^{2}+3x+9}$的值域?yàn)閇$\frac{2}{27}$,2].

查看答案和解析>>

同步練習(xí)冊答案