15.拋物線2y2=x的準(zhǔn)線方程為( 。
A.y=-1B.x=-$\frac{1}{8}$C.y=-$\frac{1}{4}$D.x=-$\frac{1}{2}$

分析 拋物線2y2=x的焦點(diǎn)在x軸上,且開(kāi)口向右,2p=$\frac{1}{2}$,由此可得拋物線2y2=x的準(zhǔn)線方程.

解答 解:拋物線2y2=x的焦點(diǎn)在x軸上,且開(kāi)口向右,2p=$\frac{1}{2}$.
∴$\frac{p}{2}$=$\frac{1}{8}$
∴拋物線y2=x的準(zhǔn)線方程為x=-$\frac{1}{8}$
故選:B.

點(diǎn)評(píng) 本題考查拋物線的標(biāo)準(zhǔn)方程,考查拋物線的幾何性質(zhì),定型與定位是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.能反映樣本數(shù)據(jù)的離散程度大小的數(shù)字特征是( 。
A.眾數(shù)B.平均數(shù)C.中位數(shù)D.標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知甲、乙、丙、丁四人排成一行,甲和乙相鄰,甲和丙不相鄰,則不同的排法有8種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求所有的實(shí)數(shù)c,使得方程x2+$\frac{5}{2}$x+c=0的兩個(gè)實(shí)根可以和c一起構(gòu)成一個(gè)三元等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知數(shù)列{an}的通項(xiàng)公式為an=n2-2λn(n∈N*),則“λ<1”是“數(shù)列{an}為遞增數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列說(shuō)法正確的是(  )
A.命題“若x2=1,則x=1”是真命題
B.命題“若x2-5x+6=0,則x=2”的逆命題是“若x≠2,則x2-5x+6≠0”
C.命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題
D.命題“若x=2,則x2-5x+6=0”的否命題是“若x=2,則x2-5x+6≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)a,b為非零實(shí)數(shù),且a<b,則下列不等式恒成立的是( 。
A.a-b>0B.a2<b2C.$\frac{1}{a^{2}}$$<\frac{1}{{a}^{2}b}$D.$\frac{1}{^{2}}$$<\frac{1}{{a}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知集合A={x|y=lg(-x2+5x+6)},集合B={x|x2-4x+4-a2≥0},命題p:x∈A,命題q:x∈B.
(I)若A∩B≠∅,求a的取值范圍;
(Ⅱ)若¬q是p的充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.圓M的圓心在直線y=2x-4上,且與直線x+y=1相切于點(diǎn)A(2,-1)
(1)試求圓M的方程;
(2)從點(diǎn)P(4,3)發(fā)出的光線經(jīng)直線y=x反射后可以照在圓M上,試求反射光線所在直線斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案