【題目】已知函數(shù)f(x)=x3﹣2x+ex ,其中e是自然對(duì)數(shù)的底數(shù).若f(a﹣1)+f(2a2)≤0.則實(shí)數(shù)a的取值范圍是

【答案】[﹣1, ]
【解析】解:函數(shù)f(x)=x3﹣2x+ex 的導(dǎo)數(shù)為:

f′(x)=3x2﹣2+ex+ ≥﹣2+2 =0,

可得f(x)在R上遞增;

又f(﹣x)+f(x)=(﹣x)3+2x+ex﹣ex+x3﹣2x+ex =0,

可得f(x)為奇函數(shù),

則f(a﹣1)+f(2a2)≤0,

即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),

即有2a2≤1﹣a,

解得﹣1≤a≤

所以答案是:[﹣1, ].

【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)A的極坐標(biāo)為( ),直線l的極坐標(biāo)方程為ρcos(θ﹣ )=a,且點(diǎn)A在直線l上,
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)圓C的參數(shù)方程為 (α為參數(shù)),試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】汽車租賃公司為了調(diào)查A,B兩種車型的出租情況,現(xiàn)隨機(jī)抽取了這兩種車型各100輛汽車,分別統(tǒng)計(jì)了每輛車某個(gè)星期內(nèi)的出租天數(shù),統(tǒng)計(jì)數(shù)據(jù)如下表: A型車

出租天數(shù)

1

2

3

4

5

6

7

車輛數(shù)

5

10

30

35

15

3

2

B型車

出租天數(shù)

1

2

3

4

5

6

7

車輛數(shù)

14

20

20

16

15

10

5

( I)從出租天數(shù)為3天的汽車(僅限A,B兩種車型)中隨機(jī)抽取一輛,估計(jì)這輛汽車恰好是A型車的概率;
(Ⅱ)根據(jù)這個(gè)星期的統(tǒng)計(jì)數(shù)據(jù),估計(jì)該公司一輛A型車,一輛B型車一周內(nèi)合計(jì)出租天數(shù)恰好為4天的概率;
(Ⅲ)如果兩種車型每輛車每天出租獲得的利潤(rùn)相同,該公司需要從A,B兩種車型中購(gòu)買一輛,請(qǐng)你根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí),給出建議應(yīng)該購(gòu)買哪一種車型,并說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)F(﹣2,0),且長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比是
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M(m,0)在橢圓C的長(zhǎng)軸上,點(diǎn)P是橢圓上任意一點(diǎn).當(dāng) 最小時(shí),點(diǎn)P恰好落在橢圓的右頂點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知以點(diǎn)A(-1,2)為圓心的圓與直線l1x+2y+7=0相切.過(guò)點(diǎn)B(-2,0)的動(dòng)直線l與圓A相交于M,N兩點(diǎn),QMN的中點(diǎn).

(1)求圓A的方程;

(2)當(dāng)|MN|=2時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=AA1=1,E為BC中點(diǎn).
(1)求證:C1D⊥D1E;
(2)若二面角B1﹣AE﹣D1的大小為90°,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A (1,2),B(a,1),C(2,3),D(﹣1,b)(a,b∈R)是復(fù)平面上的四個(gè)點(diǎn),且向量 對(duì)應(yīng)的復(fù)數(shù)分別為z1 , z2 . (Ⅰ)若z1+z2=1+i,求z1 , z2
(Ⅱ)若|z1+z2|=2,z1﹣z2為實(shí)數(shù),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x(lnx﹣ax)(a∈R)在區(qū)間(0,2)上有兩個(gè)極值點(diǎn),則a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x+ ,g(x)=2x+a,若x1∈[ ,3],x2∈[2,3],使得f(x1)≥g(x2),則實(shí)數(shù)a的取值范圍是(
A.a≤1
B.a≥1
C.a≤0
D.a≥0

查看答案和解析>>

同步練習(xí)冊(cè)答案