若實(shí)數(shù)x、y滿足x2+y2-2x+4y=0,則x-3y的最大值是
 
考點(diǎn):基本不等式
專題:直線與圓
分析:由x2+y2-2x+4y=0,可得(x-1)2+(y+2)2=5,此方程表示圓心為C(1,-2),半徑為
5
的圓.令x-3y=t,利用點(diǎn)到直線的距離公式可得
|1-3×(-2)-t|
10
5
,解出即可.
解答: 解:由x2+y2-2x+4y=0,∴(x-1)2+(y+2)2=5,
∴圓心為C(1,-2),半徑為
5

令x-3y=t,則
|1-3×(-2)-t|
10
5
,
化為|t-7|≤5
2

解得7-5
2
≤t≤7+5
2
,
∴x-3y的最大值是7+5
2

故答案為:7+5
2
點(diǎn)評:本題考查了直線與圓的位置關(guān)系、點(diǎn)到直線的距離公式,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的兩個(gè)焦點(diǎn),P是C上一點(diǎn),若|PF1|+|PF2|=6a,且△PF1F2最小內(nèi)角的大小為30°,則雙曲線C的漸近線方程是( 。
A、x±
2
y=0
B、
2
x±y=0
C、x±2y=0
D、2x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求使函數(shù)y=1-
1
2
cos
π
3
x
(x∈R)取得最大值、最小值的自變量x的集合,并分別寫出最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中裝有大小和形狀相同的小球若干個(gè)黑球和白球,且黑球和白球的個(gè)數(shù)比為4:3,從中任取2個(gè)球都是白球的概率為
1
7
現(xiàn)不放回從袋中摸取球,每次摸一球,直到取到白球時(shí)即終止,每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的,用ξ表示取球終止時(shí)所需要的取球次數(shù).
(1)求袋中原有白球、黑球的個(gè)數(shù);
(2)求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:橢圓
x2
20
+
y2
5
=1與雙曲線
x2
12
-
y2
3
=1的交點(diǎn)在同一個(gè)圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},則集合M與N之間的關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線x2=2y上的點(diǎn)M到其焦點(diǎn)F的距離|MF|=
5
2
,則點(diǎn)M的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=-
a
b
ex+
a-1
b
的圖象在x=0處的切線l與圓C:x2+y2=1相交,則點(diǎn)P(a,b)與圓C的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(0,+∞)上的可導(dǎo)函數(shù)f(x)滿足:f(x)+xf′(x)>0,則不等式f(x)>(x-1)f(x2-x)的解集為
 

查看答案和解析>>

同步練習(xí)冊答案