3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{\sqrt{-x},x≤0}\end{array}\right.$,則f(4)+f(-4)=4.

分析 利用分段函數(shù)的性質(zhì)分別求出f(4)和f(-4),由此能求出f(4)+f(-4)的值.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{\sqrt{-x},x≤0}\end{array}\right.$,
∴f(4)=log24=2,f(-4)=$\sqrt{-(-4)}$=2,
∴f(4)+f(-4)=2+2=4.
故答案為:4.

點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(-1,k),若$\overrightarrow{a}$∥$\overrightarrow$,則|$\overrightarrow{a}$+3$\overrightarrow$|=2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x|2x<2},B={y|y=$\sqrt{x}$},則A∩B=( 。
A.[0,1)B.(0,2)C.(1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x|y=ln(x-1)},集合B={x|x2-3x>0},則A∩(∁RB)=(  )
A.(1,3)B.(1,3]C.[0,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\frac{lnx+4}{x}$,求曲線f(x)在點(diǎn)(1,f(1))處的切線方程3x+y-7=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)是定義在R上的偶函數(shù),且x≤0時,f(x)=log${\;}_{\frac{1}{2}}$(1-x).
(1)求f(0),f(1);
(2)求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ln(a+x)在點(diǎn)(0,f(0))處的切線斜率為1.
(1)求實數(shù)a的值;
(2)證明:f(x)≤x;
(3)證明:f($\frac{1}{{1}^{2}}$)+f($\frac{1}{{2}^{2}}$)+f($\frac{1}{{3}^{2}}$)+…+f($\frac{1}{{n}^{2}}$)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若過點(diǎn)P(a,a)與曲線f(x)=xlnx相切的直線有兩條,則實數(shù)a的取值范圍是( 。
A.(-∞,e)B.(e,+∞)C.(0,$\frac{1}{e}$)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=xlnx+ax+b在點(diǎn)(1,f(1))處的切線為3x-y-2=0.
(1)求函數(shù)f(x)的解析式;
(2)若k∈Z,且存在x>0,使得k>$\frac{f(x+1)}{x}$成立,求k的最小值.

查看答案和解析>>

同步練習(xí)冊答案