已知A={-1,3,2m-1},B={3,m2},若A∩B=B,求m的值.
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:利用交集性質(zhì)求解.
解答: 解:∵A={-1,3,2m-1},
B={3,m2},A∩B=B,
∴m2=2m-1,解得m=1.
點(diǎn)評:本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時要注意交集性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-12x+2,x∈R,求函數(shù)f(x)在區(qū)間[0,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,求下列各式的值:
(1)
4sinα-2cosα
5sinα+3cosα
;        
(2)3sin2α+3sinαcosα-2cos2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)M(-1,0),N(1,0),并且點(diǎn)P使
MP
MN
PM
PN
,
NM
NP
成公差小于0的等差數(shù)列,點(diǎn)P的軌跡是什么曲線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(cosα,sinα),設(shè)
m
=
a
+t
b
(為實(shí)數(shù)).
(1)求|
a
-
b
|的最大值
(2)若
a
b
,問:是否存在實(shí)數(shù),使得向量
a
-
b
和向量
m
的夾角為
π
4
,若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,過A作AF⊥SB,垂足為F,點(diǎn)E,G分別是棱SA,SC的中點(diǎn).求證:
(1)平面EFG∥平面ABC;  
(2)BC⊥面SAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某個體服裝店經(jīng)營各種服裝,在某周內(nèi)獲純利潤y(元)與該周每天銷售這種服裝件數(shù)x之間的一組數(shù)據(jù)關(guān)系如下表:
x3456789
y66697381899091
已知:
7
i=1
xi2
=280,
7
i=1
xiyi=3487.(
?
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2

(1)求
x
,
y
;   
(2)畫出散點(diǎn)圖;
(3)觀察散點(diǎn)圖,若y與x線性相關(guān),請求出純利潤y與每天銷售件數(shù)x之間的回歸直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列判斷正確的是
 

①定義在R上的函數(shù)f(x),若f(-1)=f(1),且f(-2)=f(2),則f(x)是偶函數(shù)
②定義在R上的函數(shù)f(x)滿足f(2)>f(1),則f(x)在R上不是減函數(shù)
③定義在R上的函數(shù)f(x)在區(qū)間(-∞,0]上是減函數(shù),在區(qū)間(0,+∞)上也是減函數(shù),則f(x)在R上是減函數(shù).
④有些函數(shù)既是奇函數(shù)又是偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式:|x+5|+|x-1|≥a恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案