18.已知f(x)是定義在[0,1]上的函數(shù),g(x),h(x)是定義在R上的可導函數(shù),且g(x)≠0,f(x)g(x)=h(x),h′(x)g(x)≥h(x)g′(x),并且f(x)滿足以下三個條件:
①f(0)=0;②f($\frac{x}{3}$)=$\frac{1}{2}$f(x);③f(1-x)=1-f(x).
則f($\frac{2}{5}$)+f($\frac{7}{15}$)=1.

分析 g(x)≠0,f(x)g(x)=h(x),h′(x)g(x)≥h(x)g′(x),可得$f(x)=\frac{h(x)}{g(x)}$,f′(x)≥0,于是f(x)在R上單調遞增.由f(0)=0,f(1-x)=1-f(x),可得f(1)=1,因此f($\frac{1}{3}$)=$\frac{1}{2}$,$f(\frac{2}{3})$=$\frac{1}{2}$.必然有當$\frac{1}{3}≤x≤\frac{2}{3}$時,f(x)=$\frac{1}{2}$.可得$f(\frac{2}{5})=f(\frac{7}{15})=\frac{1}{2}$,即可得出.

解答 解:∵g(x)≠0,f(x)g(x)=h(x),h′(x)g(x)≥h(x)g′(x),
∴$f(x)=\frac{h(x)}{g(x)}$,${f}^{′}(x)=\frac{{h}^{′}(x)g(x)-h(x){g}^{′}(x)}{{g}^{2}(x)}$≥0,
∴f(x)在R上單調遞增.
∵f(0)=0,f(1-x)=1-f(x),∴f(1-0)=1-f(0),∴f(1)=1,
∴f($\frac{1}{3}$)=$\frac{1}{2}$f(1)=$\frac{1}{2}$,$f(1-\frac{1}{3})=1-f(\frac{1}{3})$,∴$f(\frac{2}{3})$=$\frac{1}{2}$.
∴當$\frac{1}{3}≤x≤\frac{2}{3}$時,f(x)=$\frac{1}{2}$.
∵$\frac{1}{3}<\frac{2}{5}<\frac{7}{15}<\frac{2}{3}$,
∴$f(\frac{2}{5})=f(\frac{7}{15})=\frac{1}{2}$,
∴$f(\frac{2}{5})$+$f(\frac{7}{15})$=1.
故答案為:1.

點評 本題考查了利用導數(shù)研究函數(shù)的單調性及其應用,考查了推理能力與計算能力,屬于難題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

18.不等式1<|2x-1|<3的解集為{x|-1<x<0或1<x<2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.在校英語節(jié)演講比賽中,七位評委老師為某班選手打出的分數(shù)的莖葉圖(如圖所示),去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的方差為$\frac{8}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.函數(shù)f(x)=sinx.
(1)令f1(x)=f′(x),fn+1(x)=fn′(x),(n∈N*),f2015(x)的解析式;
(2)若f(x)+1≥ax+cosx在[0,π]上恒成立,求實數(shù)a的取值范圍;
(3)證明:f($\frac{π}{2n+1}$)+f($\frac{2π}{2n+1}$)+…+f($\frac{(n+1)π}{2n+1}$)≥$\frac{{3\sqrt{2}(n+1)}}{4(2n+1)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設函數(shù)f(x)=mx2-2mlnx-6+m,g(x)=x2-lnx
(1)當m=1時,求函數(shù)f(x)的單調區(qū)間及極值;
(2)若對于x∈[1,3],f(x)<0恒成立,求實數(shù)m的取值范圍;
(3)若m>0且對于任意x1∈[1,e],任意x2∈[1,e],不等式f(x1)>g(x2)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,等腰梯形ABEF中,AB∥EF,AB=2,AD=AF=1,AF⊥BF,O為AB的中點,矩形ABCD所在平面與平面ABEF互相垂直.
(1)求證:AF⊥平面CBF;
(2)在棱FC上是否存在M,使得OM∥平面DAF?
(3)求點A到平面BDF的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=(x-1)ex-x2
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調區(qū)間;
(3)求函數(shù)f(x)在區(qū)間[0,k](k>0)上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知$\overrightarrow{a}$,$\overrightarrow$是兩個單位向量.
(1)若|3$\overrightarrow{a}$-2$\overrightarrow$|=3,試求$\overrightarrow{a}$$•\overrightarrow$的值;
(2)若$\overrightarrow{a}$、$\overrightarrow$的夾角為60°,試求向量$\overrightarrow{m}=2\overrightarrow{a}+\overrightarrow$與$\overrightarrow{n}=2\overrightarrow-3\overrightarrow{a}$的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在△ABC中,角A、B、C的對邊分別是a、b、c,點(a,b)在直線x(sinA-sinB)+ysinB=csinC上.
(1)求C的大。
(2)若c=7,求△ABC的周長的取值范圍.

查看答案和解析>>

同步練習冊答案