9.已知拋物線y2=2px(p>0)與雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)有相同的焦點(diǎn)F,點(diǎn)A是兩曲線的一個(gè)交點(diǎn),且AF⊥x軸,則雙曲線的離心率為( 。
A.$\sqrt{2}$+2B.$\sqrt{5}$+1C.$\sqrt{3}$+1D.$\sqrt{2}$+1

分析 求出拋物線與雙曲線的焦點(diǎn)坐標(biāo),將其代入雙曲線方程求出A的坐標(biāo),將A代入拋物線方程求出雙曲線的三參數(shù)a,b,c的關(guān)系,則雙曲線的漸近線的斜率可求.

解答 解:拋物線的焦點(diǎn)坐標(biāo)為($\frac{p}{2}$,0);雙曲線的焦點(diǎn)坐標(biāo)為(c,0),
∴p=2c,
∵點(diǎn)A 是兩曲線的一個(gè)交點(diǎn),且AF⊥x軸,
將x=c代入雙曲線方程得到
A(c,$\frac{^{2}}{a}$),
將A的坐標(biāo)代入拋物線方程得到$\frac{^{4}}{{a}^{2}}$=2pc,即4a4+4a2b2-b4=0.
解得$\frac{a}=\sqrt{2+2\sqrt{2}}$,
∴$\frac{^{2}}{{a}^{2}}=\frac{{c}^{2}-{a}^{2}}{{a}^{2}}=2+2\sqrt{2}$,解得:$\frac{c}{a}=\sqrt{2}+1$.
故選:D.

點(diǎn)評(píng) 本題考查由圓錐曲線的方程求焦點(diǎn)坐標(biāo)、考查雙曲線中三參數(shù)的關(guān)系及由雙曲線方程求雙曲線的離心率,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.若-4<x<1,研究函數(shù)f(x)=$\frac{{x}^{2}-2x+2}{2x-2}$的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)數(shù)列{an}滿足a1=1,an+1an=n+1(n∈N*).
(1)試比較a4-a2與a3-a1的大小,并說(shuō)明理由;
(2)求證:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$≥2($\sqrt{n+1}$-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知f(x)=sin(ωx+$\frac{π}{6}$).(ω>0),y=f(x)+1的圖象與y=2的圖象的兩相鄰交點(diǎn)間的距離為π,要得到y(tǒng)=f(x)的圖象,只須把y=sinωx的圖象( 。
A.向右平移$\frac{π}{12}$個(gè)單位B.向右平移$\frac{π}{6}$個(gè)單位
C.向左平移$\frac{π}{12}$個(gè)單位D.向左平移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知面積為$\frac{9\sqrt{3}}{2}$的△ABC中,∠A=$\frac{π}{3}$若點(diǎn)D為BC邊上的一點(diǎn),且滿足$\overrightarrow{CD}$=$2\overrightarrow{DB}$,則當(dāng)AD取最小時(shí),BD的長(zhǎng)為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{lnax+1}{x}$ (a>0).
(Ⅰ)求函數(shù)f(x)的最大值;
(Ⅱ)如果關(guān)于x的方程lnx+1=bx有兩解,寫(xiě)出b的取值范圍(只需寫(xiě)出結(jié)論);
(Ⅲ)證明:當(dāng)k∈N*且k≥2時(shí),ln$\frac{k}{2}$<$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{k}$<lnk.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)i為虛數(shù)單位,則i(1-i)=1+i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=($\sqrt{3}$sinx-cosx)($\sqrt{3}$cosx+sinx),x∈R,
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)將y=f(x)的圖象向左平移m(m>0)個(gè)單位后得到偶函數(shù)y=g(x)的圖象,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦點(diǎn)分別是F1、F2,焦距為2c,雙曲線上存在一點(diǎn)P,使直線PF1與圓x2+y2=a2相切于PF1的中點(diǎn)M,則雙曲線的離心率是$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案